Skip to main content

Human Robot-Team Interaction

Towards the Factory of the Future

  • Conference paper
  • First Online:
Artificial Life and Intelligent Agents (ALIA 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 519))

Included in the following conference series:

  • 566 Accesses

Abstract

In this paper we present a human robot-team interaction solution for automated task handling in an industrial work environment. The main idea is that multiple heterogenous robots with different capabilities support human workers by autonomously performing tasks for them. When a human worker asks for a specific item the robots need to collaborate as a team to grasp the item and bring it to the user. The approach combines various techniques from vision, robotics and multi-agent systems to create a flexible, low-cost solution for different task allocation problems. A proof of concept is implemented on a mobile manipulation platform and a low-cost personal robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As for example the “UBR-1” from Unbounded Robotics http://unboundedrobotics.com/. and “Baxter” from Rethink Robotics http://www.rethinkrobotics.com/baxter/.

  2. 2.

    Our team smARTLab@work successfully competed in the RoboCup@Work world championships in 2013 [1] and 2014, and the German Open competitions in 2013 and 2014.

  3. 3.

    For more information see: http://www.ros.org/.

  4. 4.

    http://kuka.com.

  5. 5.

    http://youbot-store.com/.

  6. 6.

    http://www.festo.com/rep/en_corp/assets/pdf/Tripod_en.pdf.

  7. 7.

    http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm.

  8. 8.

    http://www.Turtlebot.com/.

  9. 9.

    http://opencv.org.

  10. 10.

    http://wiki.ros.org/ar_track_alvar.

  11. 11.

    Due to a damaged motor and wheel, the youBot is stationary at the moment.

References

  1. Alers, S., Claes, D., Fossel, J., Hennes, D., Tuyls, K., Weiss, G.: How to win RoboCup@Work? In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS, vol. 8371, pp. 147–158. Springer, Heidelberg (2014)

    Google Scholar 

  2. Alers, S., Tuyls, K., Ranjbar-Sahraei, B., Claes, D., Weiss, G.: Insect-inspired robot coordination: foraging and coverage. In: The Fourteenth Conference on the Synthesis and Simulation of Living Systems (ALIFE) (2014)

    Google Scholar 

  3. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized control of Markov decision processes. Math. Oper. Res. 27(4), 819–840 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bischoff, R., Huggenberger, U., Prassler, E.: Kuka youbot - a mobile manipulator for research and education. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4, May 2011

    Google Scholar 

  5. Claes, D., Hennes, D., Tuyls, K., Meeussen, W.: Collision avoidance under bounded localization uncertainty. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, October 2012

    Google Scholar 

  6. Claes, D., Robbel, P., Oliehoek, F.A., Hennes, D., Tuyls, K.: Effective Approximations for Spatial Task Allocation Problems. In: Proceedings of the 25th Benelux Conference on Artifical Intelligence (BNAIC) (2013)

    Google Scholar 

  7. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization: artificial ants as a computational intelligence technique. IEEEComput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  8. Dressler, F., Akan, O.B.: A survey on bio-inspired networking. Comput. Net. 54(6), 881–900 (2010)

    Article  MATH  Google Scholar 

  9. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. The MIT Press, Cambridge (2008)

    Google Scholar 

  10. Fox, D., Burgard, W., D., F., Thrun, S.: Monte carlo localization: efficient position estimation for mobile robots. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI 1999) (1999)

    Google Scholar 

  11. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. In: IEEERobotics & Automation Magazine, vol. 4 (1997)

    Google Scholar 

  12. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Rob. 23, 43–46 (2007)

    Article  Google Scholar 

  13. Hall, M., Eibe, F., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  14. Hon, B.E.: Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base, U.S. Patent 3,876,255 (1975)

    Google Scholar 

  15. Huang, A., Olson, E., Moore, D.: LCM: lightweight communications and marshalling. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4057–4062, October 2010

    Google Scholar 

  16. Jansen, D., Buttner, H.: Real-time ethernet: the ethercat solution. Comput. Control Eng. 15(1), 16–21 (2004)

    Article  Google Scholar 

  17. Kraetzschmar, G.K., Hochgeschwender, N., Nowak, W., Hegger, F., Schneider, S., Dwiputra, R., Berghofer, J., Bischoff, R.: RoboCup@Work: competing for the factory of the future. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS, vol. 8992, pp. 171–182. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  18. Lemmens, N.: Bee-inspired Distributed Optimization. Maastricht University, Maastricht (2011)

    Google Scholar 

  19. Lemmens, N., Tuyls, K.: Stigmergic landmark optimization. Adv. Complex Syst. 15(8), 1150025-1–1150025-41 (2012). http://www.worldscientific.com/doi/abs/10.1142/S0219525911500251

  20. McCarthy, J.: An Introduction to Theoretical Kinematics Mass. MIT Press, Cambridge (1990)

    Google Scholar 

  21. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.Y.: ROS: An open-source Robot Operating System. In: Proceedings of the Open-Source Software Workshop (ICRA) (2009)

    Google Scholar 

  22. RoboCup: RoboCup (2013). http://www.robocup.org/

  23. RoboCup@Work: RoboCup@Work (2013). http://www.robocupatwork.org/

  24. TAPAS Project: Robotics-enabled Logistics and Assistive Services for the Transformable Factory of the Future (TAPAS) (2013). http://tapas-project.eu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Claes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Claes, D., Tuyls, K. (2015). Human Robot-Team Interaction. In: Headleand, C., Teahan, W., Ap Cenydd, L. (eds) Artificial Life and Intelligent Agents. ALIA 2014. Communications in Computer and Information Science, vol 519. Springer, Cham. https://doi.org/10.1007/978-3-319-18084-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18084-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18083-0

  • Online ISBN: 978-3-319-18084-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics