Skip to main content

Mobile GPGPU Acceleration of Embodied Robot Simulation

  • Conference paper
  • First Online:
Artificial Life and Intelligent Agents (ALIA 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 519))

Included in the following conference series:

Abstract

It is desirable for a robot to be able to run on-board simulations of itself in a model of the world to evaluate action consequences and test new controller solutions, but simulation is computationally expensive. Modern mobile System-on-Chip devices have high performance at low power consumption levels and now incorporate powerful graphics processing units, making them good potential candidates to host on-board simulations. We use the parallel language OpenCL on two such devices to accelerate the widely-used Stage robot simulator and demonstrate both higher simulation speed and lower energy use on a multi-robot benchmark. To the best of our knowledge, this is the first time that GPGPU on mobile devices have been used to accelerate robot simulation, and moves towards providing an autonomous robot with an embodied what-if capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Nvidia 6800 Ultra 40 GFLOPS, 100 W, Pentium 4 7 GFLOPS [11]. Chromebook with Samsung Exynos 5250 72 GFLOPS GPU, 27 GFLOPS CPU, \(<\)7 W.

  2. 2.

    The modified source code is available at https://bitbucket.org/siteks/stage_opencl.

  3. 3.

    The data structures are composed of C++ classes, while OpenCL is based on C99.

References

  1. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  2. Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE Comput. Graphics Appl. 17(6), 80–87 (1997)

    Article  Google Scholar 

  3. Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T.H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton. Robots 17(2–3), 223–245 (2004)

    Article  Google Scholar 

  4. Grasso, I., Radojkovic, P., Rajovic, N., Gelado, I., Ramirez, A.: Energy efficient hpc on embedded socs: optimization techniques for mali GPU. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pp. 123–132. IEEE (2014)

    Google Scholar 

  5. Hauert, S., Zufferey, J.-C., Floreano, D.: Reverse-engineering of artificially evolved controllers for swarms of robots. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 55–61. IEEE (2009)

    Google Scholar 

  6. Kang, S.H., Lee, S-J., Park, I.K.: Parallelization and optimization of feature detection algorithms on embedded gpu. In: International Workshop on Advanced Image Technology (2014)

    Google Scholar 

  7. Keckler, S.W., Dally, W.J., Khailany, B., Garland, M., Glasco, D.: Gpus and the future of parallel computing. IEEE Micro 31(5), 7–17 (2011)

    Article  Google Scholar 

  8. Khronos OpenCL Working Group et al: The OpenCL Specification, Version 1.1 (2010)

    Google Scholar 

  9. Liu, W., Winfield, A.F.T.: Open-hardware e-puck linux extension board for experimental swarm robotics research. Microprocess. Microsyst. 35(1), 60–67 (2011)

    Article  Google Scholar 

  10. Maghazeh, A., Bordoloi, U.D., Eles, P., Peng, Z.: General purpose computing on low-power embedded gpus: has it come of age? In: 2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIII), pp. 1–10. IEEE (2013)

    Google Scholar 

  11. Manocha, D.: General-purpose computations using graphics processors. Computer 38(8), 85–88 (2005)

    Article  Google Scholar 

  12. Marques, H.G., Holland, O.: Architectures for functional imagination. Neurocomputing 72(4), 743–759 (2009)

    Article  Google Scholar 

  13. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J-C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th conference on autonomous robot systems and competitions, vol. 1, pp. 59–65 (2009)

    Google Scholar 

  14. Nvidia: NVIDIA CUDA, Compute Unified Device Architecture Programming Guide. NVIDIA, Santa Clara, CA, USA (2007)

    Google Scholar 

  15. O’Dowd, P., Winfield, A.F.T., Studley, M.: Towards accelerated distributed evolution for adaptive behaviours in swarm robotics. In: Belpaeme, T., Bugmann, G., Melhuish, C., Witkowski, M. (eds.) Towards Autonomous Robotic Systems. pp. 169–175. University of Plymouth (2010)

    Google Scholar 

  16. O’Dowd, P.J., Winfield, A.F.T., Studley, M.: The distributed co-evolution of an embodied simulator and controller for swarm robot behaviours. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4995–5000. IEEE (2011)

    Google Scholar 

  17. Ohkura, K., Yasuda, T., Matsumura, Y., Kadota, M.: GPU implementation of food-foraging problem for evolutionary swarm robotics systems. In: Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., Stützle, T. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 238–245. Springer, Heidelberg (2014)

    Google Scholar 

  18. Pathania, A., Jiao, Q., Prakash, A., Mitra, T.: Integrated cpu-gpu power management for 3D mobile games. In: Proceedings of the The 51st Annual Design Automation Conference on Design Automation Conference, DAC 2014, pp. 40:1–40:6. ACM, New York (2014)

    Google Scholar 

  19. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Caro, G.D., Ducatelle, F. et al: Argos: a modular, multi-engine simulator for heterogeneous swarm robotics. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5027–5034. IEEE (2011)

    Google Scholar 

  20. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell. 2(2–4), 189–208 (2008)

    Article  Google Scholar 

  22. Vaughan, R.T., Zuluaga, M.: Use your illusion: sensorimotor self-simulation allows complex agents to plan with incomplete self-knowledge. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 298–309. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Wang, G., Xiong, Y., Yun, J., Cavallaro, J.R.: Accelerating computer vision algorithms using opencl framework on the mobile gpu-a case study. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2629–2633. IEEE (2013)

    Google Scholar 

  24. Wang, G., Xiong, Y., Yun, J., Cavallaro, J.R.: Computer vision accelerators for mobile systems based on opencl gpgpu co-processing. J. Sig. Process. Syst. 76(3), 283–299 (2014)

    Article  Google Scholar 

  25. Winfield, A.F.T., Blum, C., Liu, W.: Towards an ethical robot: internal models, consequences and ethical action selection. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds.) TAROS 2014. LNCS, vol. 8717, pp. 85–96. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jones, S., Studley, M., Winfield, A. (2015). Mobile GPGPU Acceleration of Embodied Robot Simulation. In: Headleand, C., Teahan, W., Ap Cenydd, L. (eds) Artificial Life and Intelligent Agents. ALIA 2014. Communications in Computer and Information Science, vol 519. Springer, Cham. https://doi.org/10.1007/978-3-319-18084-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18084-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18083-0

  • Online ISBN: 978-3-319-18084-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics