Skip to main content

Learning Ranked Sentiment Lexicons

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9042))

  • 3424 Accesses

Abstract

In contrast to classic retrieval, where users search factual information, opinion retrieval deals with the search of subjective information. A major challenge in opinion retrieval is the informal style of writing and the use of domain-specific jargon to describe the opinion targets. In this paper, we present an automatic method to learn a space model for opinion retrieval. Our approach is a generative model that learns sentiment word distributions by embedding multi-level relevance judgments in the estimation of the model parameters. The model is learned using online Variational Inference, a recently published method that can learn from streaming data and can scale to very large datasets. Opinion retrieval and classification experiments on two large datasets with 703,000 movie reviews and 189,000 hotel reviews showed that the proposed method outperforms the baselines while using a significantly lower dimensional lexicon than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aktolga, E., Allan, J.: Sentiment diversification with different biases. In: Proceedings of the 36th International ACM SIGIR, p. 593 (2013)

    Google Scholar 

  2. Andrzejewski, D., Zhu, X.: Latent Dirichlet Allocation with topic-in-set knowledge. In: Proceedings of the NAACL HLT 2009 Workshop on Semi-Supervised Learning for Natural Language Processing, pp. 43–48 (2009)

    Google Scholar 

  3. Baccianella, S., et al.: SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: Proc.7th International LREC (2010)

    Google Scholar 

  4. Blei, D.M., et al.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  5. Blei, D.M., McAuliffe, J.D.: Supervised Topic Models. In: Advances in Neural Information Processing Systems (NIPS) (2007)

    Google Scholar 

  6. Chemudugunta, C., et al.: Modeling Documents by Combining Semantic Concepts with Unsupervised Statistical Learning. In: Proceedings of the 7th International Conference on The Semantic Web, pp. 229–244 (2008)

    Google Scholar 

  7. Chen, L., et al.: Extracting Diverse Sentiment Expressions with Target-Dependent Polarity from Twitter. In: Proc. of the 6th AAAI/ICWSM (2012)

    Google Scholar 

  8. Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proc. of the 5th International LREC, pp. 417–422 (2006)

    Google Scholar 

  9. Gerani, S., et al.: Proximity-based opinion retrieval. In: Proceeding of the 33rd international ACM SIGIR, p. 403 (2010)

    Google Scholar 

  10. Hoffman, M., et al.: Online learning for latent dirichlet allocation.In: Advances in Neural Information Processing Systems (NIPS) (2010)

    Google Scholar 

  11. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD, pp. 168–177 (2004)

    Google Scholar 

  12. Jakob, N., et al.: Beyond the stars: exploiting free-text user reviews to improve the accuracy of movie recommendations. In: Proceeding of the 1st CIKM Workshop on Topic-sentiment Analysis for Mass Opinion (TSA), pp. 57–64 (2009)

    Google Scholar 

  13. Jo, Y., Oh, A.H.: Aspect and sentiment unification model for online review analysis. In: Proc. of the 4h ACM Web Search and Data Mining, pp. 815–824 (2011)

    Google Scholar 

  14. Martineau, J., Finin, T.: Delta TFIDF: An Improved Feature Space for Sentiment Analysis. In: Proc. of the AAAI on Weblogs and Social Media (2009)

    Google Scholar 

  15. Mei, Q., et al.: Topic sentiment mixture: modeling facets and opinions in weblogs. In: Proceedings of the 16th International Conference WWW, pp. 171–180 (2007)

    Google Scholar 

  16. Moghaddam, S., Ester, M.: ILDA: Interdependent LDA model for learning latent aspects and their ratings from online product reviews. In: Proceedings of the 34th International ACM SIGIR, pp. 665–674 (2011)

    Google Scholar 

  17. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)

    Article  Google Scholar 

  18. Ramage, D., et al.: Labeled LDA: A Supervised Topic Model for Credit Attribution in Multi-labeled Corpora. In: EMNLP, pp. 248–256 (2009)

    Google Scholar 

  19. Song, Y., et al.: Topic and keyword re-ranking for LDA-based topic modeling. In: Proceedings of the 18th ACM CIKM, pp. 1757–1760 (2009)

    Google Scholar 

  20. Sparling, E.I.: Rating: How Difficult is It? In: RecSys 2011 Proceedings of the fifth ACM Conference on Recommender Systems, pp. 149–156 (2011)

    Google Scholar 

  21. Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models. In: Proc. of the 17th International Conference on WWW, pp. 111–120 (2008)

    Google Scholar 

  22. Turney, P.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proc. of the 40th ACL, pp. 417–424 (2002)

    Google Scholar 

  23. Turney, P.D.: Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In: Proc. of the 12th European Conference Machine Learning, pp. 491–502 (2001)

    Google Scholar 

  24. Velikovich, L., et al.: The Viability of Web-derived Polarity Lexicons. In: Human Language Technologies: Proceedings of the NAACL, pp. 777–785 (2010)

    Google Scholar 

  25. Wang, H., et al.: Latent aspect rating analysis on review text data. In: Proc. of the 16th ACM SIGKDD, p. 783 (2010)

    Google Scholar 

  26. Weichselbraun, A., et al.: Extracting and Grounding Contextualized Sentiment Lexicons. IEEE Intelligent Systems 28(2), 39–46 (2013)

    Article  Google Scholar 

  27. Wilson, T., et al.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on HLT/EMNLP, pp. 347–354 (2005)

    Google Scholar 

  28. Zhang, M., Ye, X.: A generation model to unify topic relevance and lexicon-based sentiment for opinion retrieval. In: Proceedings of the 31st Annual International ACM SIGIR, pp. 411–418 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipa Peleja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Peleja, F., Magalhães, J. (2015). Learning Ranked Sentiment Lexicons. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2015. Lecture Notes in Computer Science(), vol 9042. Springer, Cham. https://doi.org/10.1007/978-3-319-18117-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18117-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18116-5

  • Online ISBN: 978-3-319-18117-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics