Skip to main content

Conic Scalarization Method in Multiobjective Optimization and Relations with Other Scalarization Methods

  • Conference paper
Modelling, Computation and Optimization in Information Systems and Management Sciences

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 359))

  • 1652 Accesses

Abstract

The paper presents main features of the conic scalarization method in multiobjective optimization. The conic scalarization method guarantees to generate all proper efficient solutions and does not require any kind of convexity or boundedness conditions. In addition the preference and reference point information of the decision maker is taken into consideration by this method. In this paper, relations with other scalarization methods are investigated and it is shown that some efficient solutions computed by the Pascoletti-Serafini and the Benson’s scalarization methods, can be obtained by the conic scalarization method.

This study was supported by the Anadolu University Scientific Research Projects Commission under the grant no 1304F062.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ehrgott, E.: Multicriteria Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  3. Ehrgott, M., Waters, C., Kasimbeyli, R., Ustun, O.: Multiobjective Programming and Multiattribute Utility Functions in Portfolio Optimization. INFOR: Information Systems and Operational Research 47, 31–42 (2009)

    MathSciNet  Google Scholar 

  4. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  5. Gasimov, R.N.: Characterization of the Benson proper efficiency and scalarization in nonconvex vector optimization. In: Koksalan, M., Zionts, S. (eds.) Multiple Criteria Decision Making in the New Millennium. Lecture Notes in Econom. and Math. Systems, vol. 507, pp. 189–198 (2001)

    Google Scholar 

  6. Gasimov, R.N.: Augmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programming. J. Global Optimization 24, 187–203 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gasimov, R.N., Ozturk, G.: Separation via polyhedral conic functions. Optim. Methods Softw. 21, 527–540 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gasimov, R.N., Rubinov, A.M.: On augmented Lagrangians for optimization problems with a single constraint. Journal of Global Optimization 28(5), 153–173 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gasimov, R.N., Sipahioglu, A., Sarac, T.: A multi-objective programming approach to 1.5-dimensional assortment problem. European J. Oper. Res. 179, 64–79 (2007)

    Article  MATH  Google Scholar 

  10. Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optimization Theory Appl. 67(2), 297–320 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Henig, M.I.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387–407 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ismayilova, N.A., Sagir, M., Gasimov, R.N.: A multiobjective faculty-course-time slot assignment problem with preferences. Math. Comput. Modelling. 46, 1017–1029 (2007)

    Article  MathSciNet  Google Scholar 

  13. Kasimbeyli, R.: Radial Epiderivatives and Set-Valued Optimization. Optimization 58, 521–534 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kasimbeyli, R.: A Nonlinear Cone Separation Theorem and Scalarization in Nonconvex Vector Optimization. SIAM J. on Optimization 20, 1591–1619 (2010)

    Article  MathSciNet  Google Scholar 

  15. Kasimbeyli, R.: A conic scalarization method in multi-objective optimization. Journal of Global Optimization 56(2), 279–297 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kasimbeyli, R., Ustun, O., Rubinov, A.M.: The Modified Subgradient Algorithm Based on Feasible Values. Optimization 58(5), 535–560 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ozdemir, M.S., Gasimov, R.N.: The analytic hierarchy process and multiobjective 0-1 faculty course assignment. European J. Oper. Res. 157, 398–408 (2004)

    Article  MathSciNet  Google Scholar 

  18. Pascoletti, A., Serafini, P.: Scalarizing Vector Optimization Problems. Journal of Optimization Theory and Applications 42, 499–524 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Petschke, M.: On a theorem of Arrow, Barankin and Blackwell. SIAM J. Control Optim. 28, 395–401 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rubinov, A.M., Gasimov, R.N.: Scalarization and nonlinear scalar duality for vector optimization with preferences that are not necessarily a pre-order relation. Journal of Global Optimization 29, 455–477 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tammer, C., Winkler, K.: A new scalarization approach and applications in multicriteria d.c. optimization. J. Nonlinear Convex Anal. 4(3), 365–380 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Ustun, O., Kasimbeyli, R.: Combined forecasts in portfolio optimization:a generalized approach. Computers & Operations Research 39, 805–819 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refail Kasimbeyli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kasimbeyli, R., Ozturk, Z.K., Kasimbeyli, N., Yalcin, G.D., Icmen, B. (2015). Conic Scalarization Method in Multiobjective Optimization and Relations with Other Scalarization Methods. In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-319-18161-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18161-5_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18160-8

  • Online ISBN: 978-3-319-18161-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics