Skip to main content

On the Use of Empirical Mode Decomposition (EMD) for Alzheimer’s Disease Diagnosis

  • Chapter
Advances in Neural Networks: Computational and Theoretical Issues

Abstract

Alzheimer’s Disease (AD) is considered one of the most common form of dementia; it involves a progressive decline in cognitive function because of pathological modifications or damage of the brain. One of the major challenges is to develop tools for early diagnosis and disease progression. Electroencephalogram represents potentially a noninvasive and relatively non-expensive approach for screening of dementia and AD. It provides a method to objectively quantify the cortical activation patterns but it is usually considered insensitive in the early AD. This study introduces a novel method where electroencephalographic recordings (EEG) are subjected to Empirical Mode Decomposition (EMD), which decomposes a signal into components known as Intrinsic Mode Functions (IMFs). The results, suggest that, the IMFs may be used to determine the particular frequency bandwidths in which specific phenomena occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jeong, J.: EEG Dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology 115, 1490–1505 (2004)

    Article  Google Scholar 

  2. Delbeuck, X., van Der Linden, M., Collette, F.: Alzheimer’s Disease as a disconnection syndrome, 121, 1438–1446 (2003)

    Google Scholar 

  3. Fouquet, et al.: Cerebral imaging and physiopathology of Alzheimer’s disease. Psychol Neuropsychiatr Vieil 5, 269–279 (2007)

    Google Scholar 

  4. Goldeberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, P.C., Peng, C.K., Stanley, H.E.: Fractal dynamics in physiology: Alterations with disease and aging. Nat. Acad. Sci. 99, 2466–2472 (2002)

    Article  Google Scholar 

  5. Dauwels, J., Vialatte, F., Latchoumane, C., Jeong, J., Cichocki, A.: EEG synchrony analysis for early diagnosis of Alzheimer’s disease: a study with several synchrony measures and EEG data sets. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 2224–2227 (2009)

    Google Scholar 

  6. Morabito, F.C., Labate, D., La Foresta, F., Bramanti, A., Morabito, G., Palamara, I.: Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG. Entropy 14(7), 1186–1202 (2012), doi:10.3390/e14071186

    Article  MATH  Google Scholar 

  7. Inuso, G., La Foresta, F., Mammone, N., Morabito, F.C.: Brain activity investigation by EEG processing: Wavelet analysis, kurtosis and Renyi’s entropy for artifact detection. In: Proceedings of the 2007 International Conference on Information Acquisition, ICIA 2007, Jeju City, South Korea, pp. 195–200 (2007), doi:10.1109/ICIA.2007.4295725

    Google Scholar 

  8. Azzerboni, B., Finocchio, G., Ipsale, M., La Foresta, F., McKeown, M.J., Morabito, F.C.: Spatio-temporal analysis of surface electromyography signals by independent component and time-scale analysis. In: Proceedings of The Annual International Conference of the IEEE Engineering in Medicine and Biology, vol. 1, pp. 112–113 (2002)

    Google Scholar 

  9. Calcagno, S., La Foresta, F., Versaci, M.: Independent component analysis and discrete wavelet transform for artifact removal in biomedical signal processing. American Journal of Applied Sciences 11(1), 57–68 (2014)

    Article  Google Scholar 

  10. Mammone, N., Inuso, G., La Foresta, F., Versaci, M., Morabito, F.C.: Clustering of entropy topography in epileptic electroencephalography. Neural Computing and Applications 20(6), 825–833 (2011)

    Article  Google Scholar 

  11. Dauwels, J., Srinivasan, K., et al.: Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? Intl. J. of Alzheimer’s Disease (2011)

    Google Scholar 

  12. Vialatte, F.B., Cichocki, A., Dreyfus, G., Musha, T., Shishkin, S.L., Gervais, R.: Early Detection of Alzheimer’s Disease by Blind Source Separation, Time Frequency Representation, and Bump Modeling of EEG Signals. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 683–692. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Labate, D., La Foresta, F., Morabito, G., Palamara, I., Morabito, F.C.: Entropic measures of EEG complexity in alzheimer’s disease through a multivariate multiscale approach. IEEE Sensors Journal 13(9), 3284–3292, Article number 6552994 (2013)

    Article  Google Scholar 

  14. Labate, D., La Foresta, F., Palamara, I., Morabito, G., Bramanti, A., Zhang, Z., Morabito, F.C.: EEG Complexity Modifications and Altered Compressibility in Mild Cognitive Impairment and Alzheimer’s Disease. In: Bassis, S., Esposito, A., Morabito, F.C. (eds.) Recent Advances of Neural Networks Models and Applications. SIST, vol. 26, pp. 163–173. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Labate, D., La Foresta, F., Occhiuto, G., Morabito, F.C., Lay-Ekuakille, A., Vergallo, P.: Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from single-channel ECG: A comparison. IEEE Sensors Journal 13(7), 2666–2674 (2013), doi:10.1109/JSEN.2013.2257742

    Article  Google Scholar 

  16. Mandic, D., Souretis, G., Leong, W.Y., Looney, D., Van Hulle, M.M., Tanaka, T.: Complex Empirical Mode Decomposition for Multichannel Information Fusion. In: Signal Processing Techniques for Knowledge Extraction and Information Fusion, pp. 243–260 (2008)

    Google Scholar 

  17. Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. Royal Soc. London A 454, 903–995 (1998)

    Article  MATH  Google Scholar 

  18. Campolo, M., Labate, D., La Foresta, F., Morabito, F.C., Lay-Ekuakille, A., Vergallo, P.: ECG-derived respiratory signal using Empirical Mode Decomposition. In: Proceedings of the 2011 IEEE International Symposium on Medical Measurements and Applications (MeMeA 2011), article number 5966727 (2011)

    Google Scholar 

  19. Rutkowski, T.M., Cichocki, A., Tanaka, T., Ralescu, A.L., Mandic, D.P.: Clustering of Spectral Patterns Based on EMD Components of EEG Channels with Applications to Neurophysiological Signals Separation. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part I. LNCS, vol. 5506, pp. 453–460. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Labate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Labate, D., La Foresta, F., Morabito, G., Palamara, I., Morabito, F.C. (2015). On the Use of Empirical Mode Decomposition (EMD) for Alzheimer’s Disease Diagnosis. In: Bassis, S., Esposito, A., Morabito, F. (eds) Advances in Neural Networks: Computational and Theoretical Issues. Smart Innovation, Systems and Technologies, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-18164-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18164-6_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18163-9

  • Online ISBN: 978-3-319-18164-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics