Skip to main content

Online Spectral Clustering and the Neural Mechanisms of Concept Formation

  • Chapter
Advances in Neural Networks: Computational and Theoretical Issues

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 37))

Abstract

Spectral clustering can provide surprising performances. As all kernel methods, is uses a similarity matrix, whose size grows with n 2, and it requires to solve a possibly large eigenproblem. In this paper we focus on a method for spectral embedding of stream data, modeled as an unbounded quantity of input observation. A second purpose of this work is to analyze the proposed method and compare it with traditional neural network implementations: current knowledge about computations in neurons and the brain does not contrast with the computing primitives required for a local implementation of the proposed technique. A hypothesis stemming from this work could be that concept formation and discrimination in neurons and the brain could be explained by a spectral embedding framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alger, B., Pitler, T.: Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends in Neurosciences 18(8), 333–340 (1995)

    Article  Google Scholar 

  2. Anderson, E.: The irises of the gaspe peninsula. Bulletin of the American Iris Society 59, 25 (1935)

    Google Scholar 

  3. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)

    Google Scholar 

  4. Bengio, Y., Paiement, J.F., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. Mij 1, 2 (2003)

    Google Scholar 

  5. Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nature Reviews Neuroscience 13(1), 51–62 (2012)

    Article  Google Scholar 

  6. Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92). American Mathematical Society (February 1997)

    Google Scholar 

  7. De Silva, V., Tenenbaum, J.B.: Sparse multidimensional scaling using landmark points. Tech. rep., Technical report, Stanford University (2004)

    Google Scholar 

  8. Drineas, P., Mahoney, M.W.: On the nyström method for approximating a gram matrix for improved kernel-based learning. The Journal of Machine Learning Research 6, 2153–2175 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for clustering. Pattern Recognition 40(1), 176–190 (2008)

    Article  Google Scholar 

  10. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the nystrom method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 214–225 (2004)

    Article  Google Scholar 

  11. Heeger, D.J.: Half-squaring in responses of cat striate cells. Visual Neuroscience 9, 427–443 (1992)

    Article  Google Scholar 

  12. Homa, D., Cornell, D., Goldman, D., Shwartz, S.: Prototype abstraction and classification of new instances as a function of number of instances defining the prototype. Journal of Experimental Psychology 101(1), 116 (1973)

    Article  Google Scholar 

  13. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of physiology 160(1), 106 (1962)

    Article  Google Scholar 

  14. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. The Journal of Neurophysiology 28(2), 229 (1965)

    Google Scholar 

  15. Nadler, B., Galun, M.: Fundamental limitations of spectral clustering. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 1017–1024. MIT Press, Cambridge (2007)

    Google Scholar 

  16. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14. MIT Press, Cambridge (2002)

    Google Scholar 

  17. Ning, H., Xu, W., Chi, Y., Gong, Y., Huang, T.S.: Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognition 43(1), 113–127 (2010)

    Article  MATH  Google Scholar 

  18. Oja, E.: Neural networks, principal components, and subspaces. International Journal of Neural Systems 01(01), 61–68 (1989)

    Article  MathSciNet  Google Scholar 

  19. Oja, E., Karhunen, J.: On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. Journal of Mathematical Analysis and Applications 106(1), 69–84 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation by single neurons in the human brain. Nature 435(7045), 1102–1107 (2005)

    Article  Google Scholar 

  21. Quiroga, R.Q.: Concept cells: the building blocks of declarative memory functions. Nature Reviews Neuroscience 13(8), 587–597 (2012)

    Google Scholar 

  22. Ridella, S., Rovetta, S., Zunino, R.: Circular back–propagation networks for classification. IEEE Transactions on Neural Networks 8(1), 84–97 (1997)

    Article  Google Scholar 

  23. Rovetta, S., Zunino, R.: Circular backpropagation networks embed vector quantization. IEEE Transactions on Neural Networks 10(4), 972–975 (1999)

    Article  Google Scholar 

  24. Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 2(6), 459–473 (1989)

    Article  Google Scholar 

  25. Stuart, G., Spruston, N., Sakmann, B., Häusser, M.: Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in Neurosciences 20(3), 125–131 (1997)

    Article  Google Scholar 

  26. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  27. Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 907–916. ACM (2009)

    Google Scholar 

  28. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems, pp. 1601–1608 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Rovetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rovetta, S., Masulli, F. (2015). Online Spectral Clustering and the Neural Mechanisms of Concept Formation. In: Bassis, S., Esposito, A., Morabito, F. (eds) Advances in Neural Networks: Computational and Theoretical Issues. Smart Innovation, Systems and Technologies, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-18164-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18164-6_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18163-9

  • Online ISBN: 978-3-319-18164-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics