Skip to main content

Attributed Relational Graph Matching with Sparse Relaxation and Bistochastic Normalization

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9069))

Abstract

Attributed relational graph (ARG) matching problem can usually be formulated as an Integer Quadratic Programming (IQP) problem. Since it is NP-hard, relaxation methods are required. In this paper, we propose a new relaxation method, called Bistochastic Preserving Sparse Relaxation Matching (BPSRM), for ARG matching problem. The main benefit of BPSRM is that the mapping constraints involving both discrete and bistochastic constraint can be well incorporated in BPSRM optimization. Thus, it can generate an approximate binary solution with one-to-one mapping constraint for ARG matching problem. Experimental results show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(3), 265–298 (2004)

    Google Scholar 

  2. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. on PAMI 18(4), 377–388 (1996)

    Article  Google Scholar 

  3. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problem using pairwise constraints. In: ICCV, pp. 1482–1489 (2005)

    Google Scholar 

  4. Cour, M., Srinivasan, P., Shi, J.: Balanced graph matching. In: NIPS, pp. 313–320 (2006)

    Google Scholar 

  5. Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point method for graph macthing and map inference. In: NIPS, pp. 1114–1122 (2009)

    Google Scholar 

  6. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 492–505. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Zhou, F., la Torre, F.D.: Factorized graph matching. In: CVPR, pp. 127–134 (2012)

    Google Scholar 

  8. van Wyk, B.J., van Wyk, M.A.: A pocs-based graph matching algorithm. IEEE Trans. on PAMI 16(11), 1526–1530 (2004)

    Google Scholar 

  9. Albarelli, A., Bulo, S.R., Torsello, A., Pelillo, M.: Matching as a non-coorperative game. In: ICCV, pp. 1319–1326 (2009)

    Google Scholar 

  10. Albarelli, A., Rodolà, E., Torsello, A.: Imposing semi-local geometric constraints for accurate correspondences selection in structure from motion: a game-theoretic perspective. International Journal of Computer Vision 97(1), 36–53 (2012)

    Article  Google Scholar 

  11. Liu, H., Yan, S.: Common visual pattern discovery via spatially coherent correspondences. In: CVPR, pp. 1609–1616 (2010)

    Google Scholar 

  12. Rodolà, E., Bronstein, A.M., Albarelli, A., Bergamasco, F., Torsello, A.: A game-theoretic approach to deformable shape matching. In: CVPR, pp. 182–189 (2012)

    Google Scholar 

  13. Donoho, D.: Compressed sensing. In: Technical Report, Stanford University (2006)

    Google Scholar 

  14. Rodolà, E., Torsello, A., Harada, T., Kuniyoshi, Y., Cremers, D.: Elastic net constraints for shape matching. In: ICCV, pp. 1169–1176 (2013)

    Google Scholar 

  15. Jiang, B., Zhao, H.F., Tang, J., Luo, B.: A sparse nonnegative matrix factorization technique for graph matching problem. Pattern Recognition 47(1), 736–747 (2014)

    Article  Google Scholar 

  16. Sinkhorn, R.: A relationship between arbitray positive matrices and doubly stochastic matrices. Ann. Mach. Statistics 35(2), 876–879 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ding, C., Li, T., Jordan, M.I.: Nonnegative matrix factorization for combinatorial optimization: Spectral clustering, graph matching and clique finding. In: ICDM, pp. 183–192 (2008)

    Google Scholar 

  18. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. IEEE Trans. on PAMI 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  19. Ng, E.S., Kingsbury, N.G.: Matching of interest point groups with pairwise spatial constraints. In: ICIP, pp. 2693–2696 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiang, B., Tang, J., Luo, B. (2015). Attributed Relational Graph Matching with Sparse Relaxation and Bistochastic Normalization. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics