Skip to main content

A Mixed Weisfeiler-Lehman Graph Kernel

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9069))

Abstract

Using concepts from the Weisfeiler-Lehman (WL) test of isomorphism, we propose a mixed WL graph kernel (MWLGK) framework based on a family of efficient WL graph kernels for constructing mixed graph kernel. This family of kernels can be defined based on the WL sequence of graphs. We apply the MWLGK framework on WL graph sequence taking into account the structural information which was overlooked. Our MWLGK is competitive with or outperforms the corresponding single WL graph kernel on several classification benchmark data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L., Kucera, L.: Canonical labelling of graphs in linear average time. In: 20th Annual Symposium on Foundations of Computer Science, pp. 39–46. IEEE (1979)

    Google Scholar 

  2. Bai, L., Hancock, E.R.: Graph clustering using the jensen-shannon kernel. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 394–401. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Bai, L., Hancock, E.R., Torsello, A., Rossi, L.: A quantum jensen-shannon graph kernel using the continuous-time quantum walk. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 121–131. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on Data Mining, 8 p. IEEE (2005)

    Google Scholar 

  5. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J., Kriegel, H.-P.: Protein function prediction via graph kernels. Bioinformatics 21(suppl. 1), i47–i56 (2005)

    Google Scholar 

  6. Borgwardt, K.M., Schraudolph, N.N., Vishwanathan, S.V.N.: Fast computation of graph kernels. In: Advances in Neural Information Processing Systems, pp. 1449–1456 (2006)

    Google Scholar 

  7. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

    Google Scholar 

  8. Fisher, M., Savva, M., Hanrahan, P.: Characterizing structural relationships in scenes using graph kernels. ACM Transactions on Graphics (TOG) 30, 34 (2011)

    Article  Google Scholar 

  9. Gärtner, T., Flach, P., Wrobel, S.: On Graph Kernels: Hardness Results and Efficient Alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: ICML, vol. 3, pp. 321–328 (2003)

    Google Scholar 

  11. Kashima, H., Tsuda, K., Inokuchi, A.: Kernels for graphs. Kernel Methods in Computational Biology 39(1), 101–113 (2004)

    Google Scholar 

  12. Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., Vert, J.-P.: Extensions of marginalized graph kernels. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 70. ACM (2004)

    Google Scholar 

  13. Ramon, J., Gärtner, T.: Expressivity versus efficiency of graph kernels. In: First International Workshop on Mining Graphs, Trees and Sequences, pp. 65–74. Citeseer (2003)

    Google Scholar 

  14. Schölkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press (2002)

    Google Scholar 

  15. Shervashidze, N., Petri, T., Mehlhorn, K., Borgwardt, K.M., Vishwanathan, S.V.N.: Efficient graphlet kernels for large graph comparison. In: International Conference on Artificial Intelligence and Statistics, pp. 488–495 (2009)

    Google Scholar 

  16. Shervashidze, N., Schweitzer, P., Leeuwen, E.J.V., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. The Journal of Machine Learning Research 12, 2539–2561 (2011)

    MATH  Google Scholar 

  17. Vichy, S., Vishwanathan, N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. The Journal of Machine Learning Research 11, 1201–1242 (2010)

    Google Scholar 

  18. Ju Weisfeiler, B., Leman, A.A.: Reduction of a graph to a canonical form and an algebra which appears in the process. NTI, Ser. 2(9), 12–16 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixiang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xu, L., Xie, J., Wang, X., Luo, B. (2015). A Mixed Weisfeiler-Lehman Graph Kernel. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics