Skip to main content

Isometric Mapping Hashing

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9069))

  • 1376 Accesses

Abstract

Hashing is a popular solution to Approximate Nearest Neighbor (ANN) problems. Many hashing schemes aim at preserving the Euclidean distance of the original data. However, it is the geodesic distance rather than the Euclidean distance that more accurately characterizes the semantic similarity of data, especially in a high dimensional space. Consequently, manifold based hashing methods have achieved higher accuracy than conventional hashing schemes. To compute the geodesic distance, one should construct a nearest neighbor graph and invoke the shortest path algorithm, which is too expensive for a retrieval task. In this paper, we present a hashing scheme that preserves the geodesic distance and use a feasible out-of-sample method to generate the binary codes efficiently. The experiments show that our method outperforms several alternative hashing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, pp. 459–468. IEEE (2006)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS, vol. 14, pp. 585–591 (2001)

    Google Scholar 

  3. Bengio, Y., Paiement, J.F., Vincent, P., Delalleau, O., Roux, N.L., Ouimet, M.: Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. In: Advances in Neural Information Processing Systems, pp. 177–184 (2004)

    Google Scholar 

  4. Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press (2010)

    Google Scholar 

  5. Go, I., Zhenguo, L., Xiao-Ming, W., Shih-Fu, C.: Locally linear hashing for extracting non-linear manifolds. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  6. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(12), 2916–2929 (2013)

    Article  Google Scholar 

  7. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto (2009)

    Google Scholar 

  8. Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 1–8 (2011)

    Google Scholar 

  9. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9(2579-2605), 85 (2008)

    Google Scholar 

  10. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  11. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  12. Shen, F., Shen, C., Shi, Q., Van Den Hengel, A., Tang, Z.: Inductive hashing on manifolds. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1562–1569. IEEE (2013)

    Google Scholar 

  13. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  14. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems, pp. 1753–1760 (2009)

    Google Scholar 

  15. Xiao, B., Hancock, E.R., Wilson, R.C.: Graph characteristics from the heat kernel trace. Pattern Recognition 42(11), 2589–2606 (2009)

    Article  MATH  Google Scholar 

  16. Xiao, B., Hancock, E.R., Wilson, R.C.: Geometric characterization and clustering of graphs using heat kernel embeddings. Image and Vision Computing 28(6), 1003–1021 (2010)

    Article  MATH  Google Scholar 

  17. Zhang, H., Bai, X., Zhou, J., Cheng, J., Zhao, H.: Object detection via structural feature selection and shape model. IEEE Transactions on Image Processing 22(11-12), 4984–4995 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, Y., Bai, X., Yang, H., Jun, Z., Zhang, Z. (2015). Isometric Mapping Hashing. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics