Skip to main content

Spatiotemporal Behavior Profiling: A Treasure Hunt Case Study

  • Conference paper
  • First Online:
Web and Wireless Geographical Information Systems (W2GIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9080))

  • 655 Accesses

Abstract

Trajectories have been providing us with a wealth of derived information such as traffic conditions and road network updates. This work focuses on deriving user profiles through spatiotemporal analysis of trajectory data to provide insight into the quality of information provided by users. The presented behavior profiling method assesses user participation characteristics in a treasure-hunt type event. Consisting of an analysis and a profiling phase, analysis involves a timeline and a stay-point analysis, as well as a semantic trajectory inspection relating actual and expected paths. The analysis results are then grouped around profiles that can be used to estimate the user performance in the activity. The proposed profiling method is evaluated by means of a student orientation treasure-hunt activity at the University of Twente, The Netherlands. The profiling method is used to predict the students’ gaming behavior by means of a simple team type classification, and a feature-based answer type classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmad, M., Karagiorgou, S., Pfoser, D., Wenk, C.: A comparison and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica Journal (2015) (in press)

    Google Scholar 

  2. de Graaff, V., van Keulen, M., de By, R.A.: Towards geosocial recommender systems. In: 4th Intern. Workshop on Web Intelligence & Communities (WI&C 2012), Lyon, France. ACM, April 2012

    Google Scholar 

  3. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines. Artificial Intelligence 171(5), 311–331 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding mobility based on gps data. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 312–321. ACM (2008)

    Google Scholar 

  5. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 637–646. ACM (2009)

    Google Scholar 

  6. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, California, USA, August 12–15, 2007, pp. 330–339 (2007)

    Google Scholar 

  7. Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web, pp. 791–800. ACM (2009)

    Google Scholar 

  8. Spaccapietra, S., Parent, C., Damiani, M.L., de Macedo, J.A., Porto, F., Vangenot, C.: A conceptual view on trajectories. Data & Knowledge Engineering 65(1), 126–146 (2008)

    Article  Google Scholar 

  9. Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.: SeMiTri: a framework for semantic annotation of heterogeneous trajectories. In: Proceedings of the 14th International Conference on Extending Database Technology, pp. 259–270. ACM (2011)

    Google Scholar 

  10. Guc, B., May, M., Saygin, Y., Körner, C.: Semantic annotation of gps trajectories. In: 11th AGILE International Conference on Geographic Information Science (2008)

    Google Scholar 

  11. Zheng, Y., Zhou, X.: Computing with spatial trajectories. Springer (2011)

    Google Scholar 

  12. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., et al.: Semantic trajectories modeling and analysis. ACM Computing Surveys (CSUR) 45(4), 42 (2013)

    Article  Google Scholar 

  13. Jiang, S., Fiore, G.A., Yang, Y., Ferreira Jr., J., Frazzoli, E., González, M.C.: A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, p. 2. ACM (2013)

    Google Scholar 

  14. Allen, S., Graupera, V., Lundrigan, L.: PhoneGap. In: Pro Smartphone Cross-Platform Development, pp. 131–152. Springer (2010)

    Google Scholar 

  15. de Graaff, V., de By, R.A., van Keulen, M., Flokstra, J.: Point of interest to region of interest conversion. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL GIS 2013), Orlando, FL, USA, (New York), pp. 378–381. ACM, November 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor de Graaff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de Graaff, V., Pfoser, D., van Keulen, M., De By, R.A. (2015). Spatiotemporal Behavior Profiling: A Treasure Hunt Case Study. In: Gensel, J., Tomko, M. (eds) Web and Wireless Geographical Information Systems. W2GIS 2015. Lecture Notes in Computer Science(), vol 9080. Springer, Cham. https://doi.org/10.1007/978-3-319-18251-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18251-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18250-6

  • Online ISBN: 978-3-319-18251-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics