Skip to main content

Boosted Decision Trees for Vertebral Column Disease Diagnosis

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2014)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 356))

Included in the following conference series:

Abstract

Vertebral column diseases are of the main public health problems which cause a negative impact on patients. Disk hernia and spondylolisthesis are examples of pathologies of the vertebral column which cause intensive pain. Data mining tools play an important role in medical decision making and deal with human short-term memory limitations quite effectively. This paper presents a decision support tool that can help in detection of pathology on the vertebral column using three types of decision trees classifiers. They are Single Decision Tree (SDT), Boosted Decision Tree (BDT), and Decision Tree Forest (DTF). Decision Tree and Regression (DTREG) software package is used for simulation and the database is available from UCI Machine Learning Repository. The performance of the proposed structure is evaluated in terms of accuracy, sensitivity, specificity, ROC curves, and other metrics. The results showed that the accuracies of SDT and BDT in the training phase are 90.65 and 96.77 %, respectively. BDT performed better than SDT for all performance metrics. Value of ROC for BDT in the training phase is 0.9952. In the validation phase, BDT achieved 84.84 % accuracy, which is superior to SDT (81.94 %) and DTF (84.19 %). Results showed also that grade of spondylolisthesis is the most relevant feature for classification using BDT classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdrabou E (2012) A hybrid intelligent classifier for the diagnosis of pathology on the vertebral column. In: Markov K (ed) Artificial intelligence methods and techniques for business and engineering applications. ITHEA, Rzeszow, pp 297–310

    Google Scholar 

  2. Arditi D, Pulket T (2005) Predicting the outcome of construction litigation using boosted decision trees. J Comp Civil Eng 19(4):387–393

    Article  Google Scholar 

  3. Azar AT, El-Metwally SM (2013) Decision tree classifiers for automated medical diagnosis. Neural Comput Appl 23(7–8):2387–2403 (Springer). doi:10.1007/s00521-012-1196-7

    Google Scholar 

  4. Azar AT, Elshazly HI, Hassanien AE, Elkorany AM (2014) A random forest classifier for lymph diseases. Comput Methods Prog Biomed 113(2):465–473 (Elsevier)

    Article  Google Scholar 

  5. Babalik A, Babaoglu I, Ozkis A (2012) A pre-processing approach based on artificial bee colony for classification by support vector machine. IJCEE 2(1):68–70. doi:10.7763/IJCCE.2013.V2.139

    Google Scholar 

  6. Banik S, Rangayyan RM, Boag GS (2010) Automatic segmentation of the ribs, the vertebral column, and the spinal canal in pediatric computed tomographic images. JDI 23(3):301–322

    Google Scholar 

  7. Berthonnaud E, Dimnet J, Roussouly P, Labelle H (2005) Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech 18(1):40–47

    Article  Google Scholar 

  8. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software, California

    MATH  Google Scholar 

  9. Clark LA, Pregibon D (1992) Tree-based models. In: Chambers JM, Hastie TJ (eds) Statistical models (Chap. 9). S. Chapman & Hall, New York, pp 377–420

    Google Scholar 

  10. de Ville B (2006) Decision trees for business intelligence and data mining. SAS Institute Inc., Cary

    Google Scholar 

  11. Denil M, Matheson D, de Freitas N (2014) Narrowing the gap: random forests in theory and in practice. In: Proceedings of the 31st international conference on machine learning, Beijing, China, vol 32. JMLR: W&CP

    Google Scholar 

  12. Diamantidis NA, Karlis D, Giakoumakis EA (2000) Unsupervised stratification of cross-validation for accuracy estimation. ArtifIntell 116(1–2):1–16

    MathSciNet  MATH  Google Scholar 

  13. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Proceeding of the 13th international conference on artificial intelligence: machine learning. international machine learning society, pp 148–156

    Google Scholar 

  14. Freund Y, Schapire RE (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14(5):148–156

    Google Scholar 

  15. Gonzalez FA, Romero E (2010) Biomedical image analysis and machine learning technologies: applications and techniques. IGI Global, ISBN13: 9781605669564, ISBN10: 1605669563, EISBN13: 9781605669571. doi:10.4018/978-1-60566-956-4

  16. Huang M, Hung Y, Liu D (2014) Diagnostic prediction of vertebral column using rough set theory and neural network technique. Inf Technol J 13(5):874–884. doi:10.3923/itj.2014.874.884

    Article  Google Scholar 

  17. Kulkarni Y, Sinha P K (2013) Efficient learning of random forest classifier using disjoint partitioning approach. In: Proceedings of the World Congress on Engineering 2013, vol II. WCE 2013, London, U.K, 3–5 July 2013

    Google Scholar 

  18. Ma Y, Guo G (eds) (2014) Support vector machines applications. Springer, ISBN: 978-3-319-02299-4. doi:10.1007/978-3-319-02300-7

    Google Scholar 

  19. Mattos CLC, Barreto GA (2013) ARTIE and MUSCLE models: building ensemble classifiers from fuzzy ART and SOM networks. Neural Comput Appl 22(1):49–61. doi:10.1007/s00521-011-0747-7

    Article  Google Scholar 

  20. Mingers J (1989) An empirical comparison of selection measures for decision tree induction. Mach Learn 3(4):319–342

    Google Scholar 

  21. Neto ARR, Barreto GA (2009) On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: a comparative analysis. IEEE Latin Am Trans 7(4). doi:10.1109/TLA.2009.5349049

    Google Scholar 

  22. Neto ARR, Sousa R, Barreto GA, Cardoso JS (2011) Diagnostic of pathology on the vertebral column with embedded reject option. In: Vitria J, Sanches JM, Hernández V, Jordi S, Miguel J, Hernández M (eds) Pattern recognition and image analysis. 5th Iberian conference, IbPRIA 2011. Lecture Notes in Computer Science, vol 6669. Las Palmas de Gran Canaria, Spain, Springer, Heidelberg, 8–10 June 2011. doi:10.1007/978-3-642-21257-4

    Google Scholar 

  23. Olivas ES, Guerrero JDM, Martinez-Sober M, Magdalena-Benedito JR, López AJS (2010) Handbook of research on machine learning applications and trends: algorithms, methods, and techniques. IGI Global, ISBN13: 9781605667669, ISBN10: 1605667668, EISBN13: 9781605667676. doi:10.4018/978-1-60566-766-9

  24. Quinlan JR (1993) C4. 5: programs for machine learning. Morgan Kaufmann, San Mateo

    Google Scholar 

  25. Quinlan JR (2003) Data mining tools See5 and C5.0. RuleQuest Research, Austria. http://www.rulequest.com/see5-info.html

  26. Russell S, Norvig P (2002) Artificial intelligence: a modern approach. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  27. Sherrod PH (2012) DTREG predictive modeling software. www.dtreg.com

  28. Simon S (1998) Bones: our Skelton system. HarperCollin, New York

    Google Scholar 

  29. Tay B, Hyun JK, Oh S (2014) A machine learning approach for specification of spinal cord injuries using fractional anisotropy values obtained from diffusion tensor images. Comput Math Methods Med. doi:10.1155/2014/276589

    Google Scholar 

  30. Theodoridis S, Koutroumbas K (2006) Pattern recognition, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  31. UCI (2012) Machine learning repository. http://archive.ics.uci.edu/ml/index.html

  32. Unal Y, Kocer HE (2013) Diagnosis of pathology on the vertebral column with backpropagation and Naïve Bayes classifier. In: International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Konya, 9–11 May 2013. doi:10.1109/TAEECE.2013.6557285

  33. Williams G (2011) Data mining with rattle and R: the art of excavating data for knowledge discovery. Springer Science + Business Media, LLC, New York

    Google Scholar 

  34. Yao J, O, Connor SD, Summers RM (2006) Automated spinal column extraction and partitioning. In Proceedings of the 3rd IEEE international symposium on biomedical imaging: nano to macro, Arlington, VA, pp 390–393, 6–9 Apr 2006. doi:10.1109/ISBI.2006.1624935

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Azar, A.T., Ali, H.S., Balas, V.E., Olariu, T., Ciurea, R. (2016). Boosted Decision Trees for Vertebral Column Disease Diagnosis. In: Balas, V., C. Jain, L., Kovačević, B. (eds) Soft Computing Applications. SOFA 2014. Advances in Intelligent Systems and Computing, vol 356. Springer, Cham. https://doi.org/10.1007/978-3-319-18296-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18296-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18295-7

  • Online ISBN: 978-3-319-18296-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics