Abstract
This chapter discusses the problem of trajectory planning for WSN (Wireless Sensor Network) data retrieving deployed in remote areas with a cooperative system of UAVs (Unmanned Aerial Vehicles). Three different path planners are presented in order to autonomously guide the UAVs during the mission. The missions are given by a set of waypoints which define WSN collection zones and each UAV should pass through them to collect the data while avoiding passing over forbidden areas and collisions between UAVs. The proposed UAV trajectory planners are based on Genetics Algorithm (GA), RRT (Rapidly-exploring Random Trees) and RRT* (Optimal Rapidly-exploring Random Trees). Simulations and experiments have been carried out in the airfield of Utrera (Seville, Spain). These results are compared in order to measure the performance of the proposed planners.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beard, R.W., McLain, T.W., Nelson, D.B., Kingston, D., Johanson, D.: Decentralized cooperative aerial surveillance using fixed-wing miniature uavs. Proc. IEEE 94(7), 1306–1324 (2006)
Ollero, A.: Aerial robotics cooperative assembly system (arcas): first results. In: Aerial Physically Acting Robots (AIRPHARO) Workshop, IROS 2012, Vilamoura, Portugal, 7–12 Oct 2012
Merino, L., Caballero, F., Martinez de Dios, J.R., Maza, I., Ollero, A.: An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 65(1–4), 533–548 (2012)
Cobano, J.A., MartÃnez-de Dios, J.R., Conde, R., Sánchez-Matamoros, J.M., Ollero, A.: Data retrieving from heterogeneous wireless sensor network nodes using uavs. J. Intell. Robot. Syst. 60(1), 133–151 (2010)
Gilmore, J.F.: Autonomous vehicle planning analysis methodology. In: AIAAA Guidance Navigation Control Conference, pp. 2000–4370 (1991)
Szczerba, R.J.: Threat netting for real-time, intelligent route planners. In: IEEE Symposium Information, Decision Control, pp. 377–382 (1999)
Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., De Carvalho, A.C.P.L.F.: A survey of evolutionary algorithms for clustering. Trans. Sys. Man Cyber Part C 39(2), 133–155 (2009). http://dx.doi.org/10.1109/TSMCC.2008.2007252
Li, Y., Ang, K., Chong, G., Feng, W., Tan, K., Kashiwagi, H.: Cautocsdevolutionary search and optimisation enabled computer automated control system design. Int. J. Autom. Comput. 1(1), 76–88 (2007)
Chang Wook Ahn, R.S.R.: A genetic algorithm for shortest path routing, problem and the sizing of populations. IEEE Trans. Evol. Comput. 6(6), 566–579 (2012)
Cobano, J.A., Conde, R., Alejo, D., Ollero, A.: Path planning based on genetic algorithms and the monte-carlo method to avoid aerial vehicle collisions under uncertainties. In: Proceedings of IEEE International Robotics and Automation (ICRA) Conference, pp. 4429–4434 (2011)
Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. In: Computer Science Department, Iowa State University. Technical Report TR 98–11 (1998)
Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30, 1–76 (2011)
Pignaton, C.P.T.L.E., Morado, A.: Middleware support in unmanned aerial vehicles and wireless sensor networks for surveillance applications. Stud. Comput. Intell. 237, 289–296 (2009)
Mitchell, H.L.P.D., Qiu, J., Grace, D.: Use of aerial platforms for energy efficient medium access control in wireless sensor networks. Comput. Commun. 33(4), 500–512 (2010)
Teh, S.K., Mejias, L., Corke, P., Hu, W.: Experiments in integrating autonomous uninhabited aerial vehicles (uavs) and wireless sensor networks. In: 2008 Australasian Conference on Robotics and Automation (ACRA 08). The Australian Robotics and Automation Association Inc., Canberra (2008). http://eprints.qut.edu.au/15536/
Valente, J., Sanz, D., Barrientos, A., Cerro, J., Ribeiro, A., Rossi, C.: An air-ground wireless sensor network for crop monitoring. Sensors 11(6), 6088–6108 (2011). http://www.mdpi.com/1424-8220/11/6/6088
Martinez-de Dios, J., Lferd, K., de San Bernab, A., Nez, G., Torres-Gonzlez, A., Ollero, A.: Cooperation between uas and wireless sensor networks for efficient data collection in large environments. J. Intell. Robot. Syst. 70(1–4), 491–508 (2013). http://dx.doi.org/10.1007/s10846-012-9733-2
Reif, J., Sharir, M.: Motion planning in the presence of moving obstacles. J. ACM 41(4), 764–790 (1994)
Kuchar, J.K., Yang, L.C.: A review of conflict detection and resolution modeling methods. IEEE Trans. Intell. Transp. Syst. 1, 179–189 (2000)
Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous uav guidance. J. Intell. Robot. Syst. 57(1–4), 65–100 (2010)
Prasanna, H.M., Ghosey, D., Bhat, M.S., Bhattacharyya, C., Umakant, J.: Interpolation-aware trajectory optimization for a hypersonic vehicle using nonlinear programming. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, USA, Aug 2005
Vela, A., Solak, S., Singhose, W., Clarke, J.-P.: A mixed integer program for flight-level assignment and speed control for conflict resolution. In: Proceedings of the 48th IEEE Conference on Decision and Control, pp. 5219–5226, Dec 2009
Pallottino, L., Feron, E., Bicchi, A.: Conflict resolution problems for air traffic management systems solved with mixed integer programming. Int. Transp. Syst. IEEE Trans. 3(1), 3–11 (2002)
Bauso, D., Giarre, L., Pesenti, R.: Multiple uav cooperative path planning via neuro-dynamic programming. In: 43rd IEEE Conference on Decision and Control, pp. 1087–1092. Nassau, Bahamas, Dec 2004
Geiger, B.: Unmanned aerial vehicle trajectory planning with direct methods. Ph.D. dissertation, The Pennsylvania State University, Pennsylvania, USA (2009)
Vera, S., Cobano, J.A., Heredia, G., Ollero, A.: An hp-adaptative pseudospectral method for collision avoidance with multiple uavs in real-time applications. In: IEEE International Conference Robotics and Automation (ICRA), pp. 4717–4722. Hong-Kong, China, 31 May–7 June 2014
Spall, J.C.: Introduction to Stochastic Search and Optimization, 1st edn. Wiley, New York (2003)
Chakrabarty, A., Langelaan, J.W.: Flight path planning for uav atmospheric energy harvesting using heuristic search. In: AIAA Guidance, Navigation and Controls Conference, Toronto, Canada, Aug 2010
Lamont, G.B., Slear, J., Melendez, K.: Uav swarm mission planning and routing using multi-objective evolutionary algorithms. In: IEEE Symposium on Computational Intelligence in Multicriteria Decision Making, pp. 10–20. Honolulu, Hawai, USA, 1–5 April 2007
Conde, R., Alejo, D., Cobano, J.A., Viguria, A., Ollero, A.: Conflict detection and resolution method for cooperating unmanned aerial vehicles. J. Intell. Robot. Syst. 65, 495–505 (2012). doi:10.1007/s10846-011-9564-6
Alejo, D., Cobano, J.A., Heredia, G., Ollero, A.: Collision-free 4d trajectory planning in unmanned aerial vehicles for assembly and structure construction. J. Intell. Robot. Syst. 73, 783–795 (2014)
Durand, N., Alliot, J.: Ant colony optimization for air traffic conflict resolution. In: Proceedings of the Eighth USA/Europe Air Traffic Management Research and Development Seminar (ATM2009), Napa, CA, USA (2009)
Xue, E.M., y Atkins, M.: Terminal area trajectory optimization using simulated annealing. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, Jan 2006
Lavalle, S.M., Kuffner, J.J., Jr: Rapidly-exploring random trees: progress and prospects. In: Algorithmic and Computational Robotics: New Directions, pp. 293–308 (2000)
Alejo, D., Conde, R., Cobano, J., Ollero, A.: Multi-UAV collision avoidance with separation assurance under uncertainties. In: IEEE International Conference on Mechatronics, ICM 2009, pp. 1–6, April (2009)
LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006). http://planning.cs.uiuc.edu/
Akgun, B., Stilman, M.: Sampling heuristics for optimal motion planning in high dimensions. In: International Conferences on Intelligent Robots and Systems (IROS2011), pp. 2640–2645. San Francisco, USA, 25–30 Sept 2011
Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. Syst. Sci. Cybern., IEEE Trans. 4(2), 100–107 (1968)
Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82, Dec 2012. http://ompl.kavrakilab.org
Otte, M., Correll, N.: 1 c-forest: parallel shortest-path planning with super linear speedup. IEEE Robot 29(3) 798–806 June 2013
Yang, K., Sukkarieh, S.: Planning continuous curvature paths for uavs amongst obstacles. In: Australasian Conference on Robotics Automation, Canberra, Australia (2008)
Acknowledgments
This work was supported by the European Commission FP7 ICT Programme under the Project PLANET (European Commission FP7-257649-ICT-2009-5) and the RANCOM Project (P11-TIC-7066) funded by the Junta de AndalucÃa (Spain). David Alejo is granted with a FPU Spanish fellowship from the Ministerio de Educación, Cultura y Deporte (Spain).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Alejo, D., Cobano, J.A., Heredia, G., MartÃnez-de Dios, J.R., Ollero, A. (2015). Efficient Trajectory Planning for WSN Data Collection with Multiple UAVs. In: Koubâa, A., MartÃnez-de Dios, J. (eds) Cooperative Robots and Sensor Networks 2015. Studies in Computational Intelligence, vol 604. Springer, Cham. https://doi.org/10.1007/978-3-319-18299-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-18299-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18298-8
Online ISBN: 978-3-319-18299-5
eBook Packages: EngineeringEngineering (R0)