Skip to main content

Learning Paired-Associate Images with an Unsupervised Deep Learning Architecture

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9091))

Included in the following conference series:

  • 2738 Accesses

Abstract

This paper presents an unsupervised multi-modal learning system that learns associative representation from two input modalities, or channels, such that input on one channel will correctly generate the associated response at the other and vice versa. In this way, the system develops a kind of supervised classification model meant to simulate aspects of human associative memory. The system uses a deep learning architecture (DLA) composed of two input/output channels formed from stacked Restricted Boltzmann Machines (RBM) and an associative memory network that combines the two channels using a simple back-fitting algorithm. The DLA is trained on and pairs of MNIST handwritten digit images to develop hierarchical features and associative representations that are able to reconstruct one image given its paired-associate. Experiments show that the multi-modal learning system generates models that are as accurate as back-propagation networks but with the advantage of a bi-directional network and unsupervised learning from either paired or non-paired training examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bengio, Y.: Learning deep architectures for ai. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bengio, Y., Lecun, Y.: Scaling learning algorithms towards AI. MIT Press (2007)

    Google Scholar 

  3. Deng, L., Seltzer, M.L., Yu, D., Acero, A., Mohamed, A.R., Hinton, G.E.: Binary coding of speech spectrograms using a deep auto-encoder. In: Kobayashi, T., Hirose, K., Nakamura, S. (eds.) Interspeech, pp. 1692–1695. ISCA (2010)

    Google Scholar 

  4. Desjardins, G., Courville, A., Bengio, Y.: Tempered markov chain monte carlo for training of restricted boltzmann machines. Technical Report 1345, Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, October 2009

    Google Scholar 

  5. Gerrig, R.J., Zimbardo, P.G.: Psychology and Life. MyPsychLab Series. Pearson/Allen and Bacon (2007)

    Google Scholar 

  6. Gouws, S.: Deep unsupervised feature learning for natural language processing. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop, NAACL HLT 2012, Stroudsburg, PA, USA, pp. 48–53. Association for Computational Linguistics (2012)

    Google Scholar 

  7. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Technical report, Gatsby Computational Neuroscience Unit, University College London (2002)

    Google Scholar 

  8. Hinton, G.E.: Learning multiple layers of representation. Trends in Cognitive Sciences 11, 428–434 (2007)

    Article  Google Scholar 

  9. Hinton, G.E.: A practical guide to training restricted boltzmann machines, Technical report (2010)

    Google Scholar 

  10. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.M.: The wake-sleep algorithm for unsupervised neural networks. Science 268(5214), 1158–1161 (1995)

    Article  Google Scholar 

  11. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Computation 18, 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hinton, G.E., Sejnowski, T.J.: Learning and relearning in boltzmann machines. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 282–317. MIT Press, Cambridge (1986)

    Google Scholar 

  13. Le, Q.V., Monga, R., Devin, M., Corrado, G., Chen, K., Ranzato, M., Dean, J., Ng, A.Y.: Building high-level features using large scale unsupervised learning. CoRR, abs/1112.6209 (2012)

    Google Scholar 

  14. Mayer, R.E: Multimedia Learning. Cambridge University Press (2009)

    Google Scholar 

  15. Paivio, A.: Mental representations. Oxford University Press, Incorporated (1990)

    Google Scholar 

  16. Nther Palm, G.: Neural associative memories and sparse coding. Neural Netw. 37, 165–171 (2013)

    Article  Google Scholar 

  17. Ranzato, M., Boureau, Y.I., Lecun, Y.: Sparse feature learning for deep belief networks. In: NIPS-2007 (2007)

    Google Scholar 

  18. Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., Poggio, T.: A quantitative theory of immediate visual recognition. Prog Brain Res., 33–56 (2007)

    Google Scholar 

  19. Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep boltzmann machines. In: Bartlett, P., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 2231–2239 (2012)

    Google Scholar 

  20. Wang, T.: Classification Via Reconstruction Using A Multi-Channel Deep Learning Architecture. Masters Thesis, Acadia University, Wolfvillle, NS, Canada (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Silver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, T., Silver, D.L. (2015). Learning Paired-Associate Images with an Unsupervised Deep Learning Architecture. In: Barbosa, D., Milios, E. (eds) Advances in Artificial Intelligence. Canadian AI 2015. Lecture Notes in Computer Science(), vol 9091. Springer, Cham. https://doi.org/10.1007/978-3-319-18356-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18356-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18355-8

  • Online ISBN: 978-3-319-18356-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics