Skip to main content

Artificial Intelligence Techniques for Optimal Power Flow

  • Conference paper
  • First Online:
Soft Computing Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 357))

Abstract

Nowadays, there is a huge interest in developing new approaches for power system-related problem solving. Generally, (meta)heuristic search methods are considered a good alternative to conventional ones. This paper aims to elaborate an original mathematical model focused on genetic algorithms (GA). Several practical issues are presented. Further, it is intended to be used for transmission expansion planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong KP, Li A, Law TMY Advanced constrained genetic algorithm load flow method. Gener Trans Distrib IEE Proc 146(6):609–616

    Google Scholar 

  2. Ayan K, Arifoglu U, Kilic U (2011) Integrated AC/DC systems load flow using genetic algorithm. In: 5th International power engineering and optimization conference (PEOCO), 2011, pp 404–409

    Google Scholar 

  3. Rudnick H, Palma R, Cura E, Silva C (1996) Economically adapted transmission systems in open access schemes-application of genetic algorithms. IEEE Trans Power Syst 11(3):1427–1440

    Article  Google Scholar 

  4. Sulaiman MH, Mustafa MW, Aliman O (2009) Transmission loss and load flow allocations via genetic algorithm technique. TENCON 2009–2009 IEEE Region 10 Conference, pp 1–5

    Google Scholar 

  5. Chakraborty D, Sharma CP, Das B, Abhishek K, Malakar T (2009) Distribution system load flow solution using genetic algorithm. In: International conference on power systems, ICPS ‘09, pp 1–6, 27–29

    Google Scholar 

  6. Ting TO, Wong KP, Chung CY Hybrid constrained genetic algorithm/particle swarm optimization load flow algorithm. Gener Trans Distrib IET 2(6):800–812

    Google Scholar 

  7. Nakawiro W, Erlich IA (2009) Combined GA-ANN strategy for solving optimal power flow with voltage security constraint. In: Asia-pacific power and energy engineering conference, APPEEC 2009, pp 1–4

    Google Scholar 

  8. Anastasios Bakirtzis G, Pandel Biskas N, Christoforos Zoumas E, Petridis V (2002) Optimal power flow by enhanced genetic algorithm. IEEE Trans Power Syst 17(2):229–236

    Article  Google Scholar 

  9. Todorovski M, Rajicic D (2006) An initialization procedure in solving optimal power flow by genetic algorithm. IEEE Trans Power Syst 21(2):480–487

    Article  Google Scholar 

  10. Onate Yumbla PE, Ramirez JM, Coello Coello CA (2008) Optimal power flow subject to security constraints solved with a particle swarm optimizer. IEEE Trans Power Syst 23(1):33–40

    Article  Google Scholar 

  11. Esmin AAA, Lambert-Torres G, Zambroni de Souza AC (2005) A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans Power Syst 20(2):859–866

    Article  Google Scholar 

  12. Vlachogiannis JG, Lee KY (2006) A comparative study on particle swarm optimization for optimal steady-state performance of power systems. IEEE Trans Power Syst 21(4):1718–1728

    Article  Google Scholar 

  13. Hazra J, Sinha AK (2007) Congestion management using multiobjective particle swarm optimization. IEEE Trans Power Syst 22(4):1726–1734

    Article  Google Scholar 

  14. Ahmed A, Esmin G, Lambert-Torres CAZ, de Souza (2005) A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans Power Syst 20(2):859–866

    Google Scholar 

  15. AlRashid MR, El-Hawary ME (2007) Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects. IEEE Trans Power Syst 22(4):2030–2038

    Article  Google Scholar 

  16. Pablo E, Oñate Y, Juan Ramirez M, Carlos Coello A (2008) Optimal power flow subject to security constraints solved with a particle swarm optimizer. IEEE Trans Power Syst 23(1):33–40

    Article  Google Scholar 

  17. Miranda V, Saraiva JT (1992) Fuzzy modeling of power system optimal load flow. IEEE Trans Power Syst 7(2):843–849

    Article  Google Scholar 

  18. Ramesh VC, Li Xuan (1997) A fuzzy multiobjective approach to contingency constrained OPF. IEEE Trans Power Syst 12(3):1348–1354

    Article  Google Scholar 

  19. Gallego RA, Romero R, Monticelli AJ (2000) Tabu search algorithm for network synthesis. IEEE Trans Power Syst 15(2):490–495

    Article  Google Scholar 

  20. Da Silva EL, Ortiz JMA, De Oliveira GC, Binato S (2001) Transmission network expansion planning under a tabu search approach. IEEE Trans Power Syst 16(1):62–68

    Article  Google Scholar 

  21. Binato S, Pereira MVF, Granville S (2001) A new benders decomposition approach to solve power transmission network design problems. IEEE Trans Power Syst 16(2):235–240

    Article  Google Scholar 

  22. Pop D (2010) Considerations regarding the power system expansion planning. Ph D thesis Politehnica University Timisoara, Romania (in Romanian)

    Google Scholar 

  23. Kim KJ, Park YM, Lee KY (1988) Optimal long term transmission expansion planning based on maximum principle. IEEE Trans Power Syst 3(4):1494–1501

    Article  Google Scholar 

  24. Jr Faria H, Binato S, Resende MGC, Falcao DM (2005) Power transmission network design by greedy randomized adaptive path relinking. IEEE Trans Power Syst 20(1):43–49

    Article  Google Scholar 

  25. Mori H, Takeda K (1994) Parallel simulated annealing for power system decomposition. IEEE Trans Power Syst 9(2):789–795

    Article  Google Scholar 

  26. Kilyeni St (2009) Computer methods in power systems analysis. Orizonturi Universitare Publishing House, Timişoara (in Romanian)

    Google Scholar 

  27. Thomas W (2009) Global optimization algorithms—theory and application. http://www.it-weise.de/

  28. Randy Haupt L, Haupt SE (2004) Practical genetic alghorithms. 2nd edn., Wiley, Inc

    Google Scholar 

  29. Solomonesc F, Barbulescu C, Kilyeni St, Cristian PD, Teslovan R (2012) Genetic algorithm power flow computing approach. In: Proceedings of the 47th international universities’ power engineering conference (UPEC), 2012, London, pp 1–6

    Google Scholar 

  30. Ray D, Zimmerman E, Sanchez CM (2011) MatPower 4.1 User’s Manual

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the strategic grant POSDRU/159/1.5/S/137070 (2014) of the Ministry of National Education, Romania, cofinanced by the European Social Fund—Investing in People, within the Sectoral Operational Program Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Barbulescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Barbulescu, C., Kilyeni, S., Simo, A., Oros, C. (2016). Artificial Intelligence Techniques for Optimal Power Flow. In: Balas, V., Jain, L., Kovačević, B. (eds) Soft Computing Applications. Advances in Intelligent Systems and Computing, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-319-18416-6_101

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18416-6_101

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18415-9

  • Online ISBN: 978-3-319-18416-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics