Skip to main content

Equivalent Speed and Equivalent Power of the Wind Systems that Works at Variable Wind Speed

  • Conference paper
  • First Online:
Soft Computing Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 357))

Abstract

This paper presents an analysis of the dynamics of the wind systems that work at variable wind speeds. This analysis is based on numerical simulations that use the motion equation. In this paper, usual mathematical models of both wind turbine and permanent magnet synchronous generator are used. Based on the measurements of both wind speed and generator speed, two basic sizes are defined, namely the equivalent wind speed and the optimum mechanical angular speed. The optimum mechanical angular speed is a function of equivalent wind speed. By analyzing the time variation of the generator rotation speed, the area of optimum functioning can be determined and it is characterized by optimum mechanical angular speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babescu M, Borlea I, Jigoria Oprea D (2012) Fundamental aspects concerning wind power system operation part.1, matematical models. In: IEEE MELECON 2012, Medina Tunisia, 25–28 March 2012, ISBN: 978-1-4673-0783-3

    Google Scholar 

  2. Babescu M, Borlea I, Jigoria Oprea D (2012) Fundamental aspects concerning wind power system operattion part.2, case study. In: IEEE MELECON 2012, Medina Tunisia, 25–28 March 2012, ISBN: 978-1-4673-0783-3

    Google Scholar 

  3. Babescu M, Gana O, Clotea L (2012) Fundamental problems related to the control of wind energy conversion systems-maximum power extraction and smoothing the power fluctuations deliveres to the grid. In: OPTIM-13th international conference on optimizytion of electrical and electronic equipment, Optim 2012, Brasov, 24–26 May 2012

    Google Scholar 

  4. Babescu M, Borza I, Gana O, Lacatusu F (2010) Comportarea sistemului electroenergetic eolian la variatii rapide ale vitezei vântului, Producerea, transportul si utilizarea energiei, Editura RISOPRINT Cluj-Napoca, 2010, ISSN: 2066-4125, pp 11–24

    Google Scholar 

  5. Babescu M, Boraci R, Chioreanu C, Koch C, Gana O (2010) On functioning of the electric wind system at its maximum power. In: ICCC-CONTI 2010, Timisoara, Romania, 27–29 May 2010

    Google Scholar 

  6. Bej A (2003) Turbine de vânt, Editura POLITEHNICA Timisoara, ISBN: 973-625-098-9

    Google Scholar 

  7. Barakati SM, Kazerani M, Aplevich JD (2009) Maximum power tracking control for a wind turbine system including a matrix converter. IEEE Trans Energy Convers 24(3):705–713

    Article  Google Scholar 

  8. El Aimani S, Francois B, Minne F, Robyns B (2003) Comparativ analysis of control structures for variable speed wind turbine. In: Proceedings of CESA, Lille, France, 9–11July 2003

    Google Scholar 

  9. Gavris ML (2013) Dual input DC-DC converters for renewable energy processing. Teza de doctorat, Univ.“POLITEHNICA TIMISOARA”

    Google Scholar 

  10. Gertmar (2000) Wind turbines. Springer, Berlin

    Google Scholar 

  11. Jeong HG, Seung RH, Lee KB (2012) An improved maximum power point tracking method for wind power systems-energies. 5:1339–1354; doi:10.3390 /en5051339 energies ISSN: 1996-1073. www.mdpi.com/journal/energiesUH

  12. Jiao S, Hunter G, Ramsden V, Patterson D (2001) Control system design for a 20 kw wind turbine generator with a boost converter and battery bank load. In Proceedings of IEEE PESC, Vancouver, BC, Canada, June 2001, pp 2203–2206

    Google Scholar 

  13. Kim KH, Van TL, Lee DC, Song SH, Kim EH (2013) Maximum output power tracking control in variable-speed wind turbine system considering rotor inertisl power. IEEE Trans Ind Electron 60(8):3207–3217

    Article  Google Scholar 

  14. Koutroulis E, Kalaitzakis K (2006) Design of a maximum power tracking system for wind-energy-conversion applications-486. IEEE Trans Ind Electron 53(2)

    Google Scholar 

  15. Luca D, Nichita C, Diop AP, Dakyo B, Ceanga E (2001) Load torque estimators for wind turbines simulators. In: Proceedings of EPE Conference Graz, Austria, Sep 2001, CD-ROM

    Google Scholar 

  16. Nishikata S, Tatsuta F (2010) A new interconnecting method for wind turbine/generators in a wind farm and basic performances of the integrated system. IEEE Trans Ind Electron 57(2):468–476, ISSN 0278-0046

    Google Scholar 

  17. Örs M (2009) Maximum power point tracking for small scale wind turbine with self-excited induction generator-CEAI. vol 11, no 2, pp 30–34, 2009. Printed in Romania, Technical University of Cluj-Napoca Department of Automatic Control, 26–28 Gh. Baritiu Str. 400027 Cluj-Napoca, Romania

    Google Scholar 

  18. Pandey KK, Dr. Tiwari AN (2012) Maximum power point tracking of wind energy convertion system with synchronus generator. Int J Eng Res Technol 1(5). ISSN: 2278-0181, MMMEC Gorakhpur-273010

    Google Scholar 

  19. Ciocarlie H, Balog F, Erdodi G-M, Petrescu D-I (2014) Peak energy determination by a sample at idle mode operation. In: 9th IEEE international symposium on applied computational intelligence and informatics, Timişoara, Romania, 15–17 May 2014. ISBN: 978-1-4799-4694-5/14, pp 295–298

    Google Scholar 

  20. Petru T (2003) Modeling wind turbines for power system studies. Ph.D. dissertation, Chalmers, Goteborg, Sweden

    Google Scholar 

  21. Quaschning V (2005) Understanding renewable energy systems. ISBN: 1-84407-128-6, London Carl Hanser Verlag GmbH & Co KG

    Google Scholar 

  22. Balog F, Ciocarlie H, Babescu M, Petrescu D-I (2014) Maximizing the captured energy of the wind system. In: 9th IEEE international symposium on applied computational intelligence and informatics, Timişoara, Romania, 15–17 May 2014. ISBN: 978-1-4799-4694-5/14, pp 289–293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florica Balog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Balog, F., Ciocarlie, H., Babescu, M., Erdodi, GM. (2016). Equivalent Speed and Equivalent Power of the Wind Systems that Works at Variable Wind Speed. In: Balas, V., Jain, L., Kovačević, B. (eds) Soft Computing Applications. Advances in Intelligent Systems and Computing, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-319-18416-6_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18416-6_106

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18415-9

  • Online ISBN: 978-3-319-18416-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics