Abstract
In this paper, we propose a real-time algorithm for counting people from depth image sequences acquired using the Kinect sensor. Counting people in public vehicles became a vital research topic. Information on the passenger flow plays a pivotal role in transportation databases. It helps the transport operators to optimize their operational costs, providing that the data are acquired automatically and with sufficient accuracy. We show that our algorithm is accurate and fast as it allows 16 frames per second to be processed. Thus, it can be used either in real-time to process traffic information on the fly, or in the batch mode for analyzing very large databases of previously acquired image data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albiol, A., Mora, I., Naranjo, V.: Real-time high density people counter using morphological tools. IEEE Transactions on Intelligent Transportation Systems 2(4), 204–218 (2001)
Bernini, N., Bombini, L., Buzzoni, M., Cerri, P., Grisleri, P.: An embedded system for counting passengers in public transportation vehicles. In: Proc. IEEE ASME, pp. 1–6 (2014)
Chan, A.B., Liang, Z.S.J., Vasconcelos, N.: Privacy preserving crowd monitoring: Counting people without people models or tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–7 (June 2008)
Chan, A.B., Vasconcelos, N.: Modeling, clustering, and segmenting video with mixtures of dynamic textures. IEEE TPAMI 30(5), 909–926 (2008)
Conte, D., Foggia, P., Percannella, G., Tufano, F., Vento, M.: A method for counting moving people in video surveillance videos. EURASIP Journal on Advances in Signal Processing 2010(1), 231–240 (2010), http://asp.eurasipjournals.com/content/2010/1/231240
Ferryman, J., Ellis, A.L.: Performance evaluation of crowd image analysis using the PETS2009 dataset. Patt. Recogn. Lett. 44(0), 3–15 (2014), http://www.sciencedirect.com/science/article/pii/S0167865514000191
Ge, W., Collins, R.T.: Crowd detection with a multiview sampler. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 324–337. Springer, Heidelberg (2010), http://dl.acm.org/citation.cfm?id=1888150.1888177
Gudyś, A., Rosner, J., Segen, J., Wojciechowski, K., Kulbacki, M.: Tracking people in video sequences by clustering feature motion paths. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 236–245. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-319-11331-9_29
Hsieh, J.W., Peng, C.S., Fan, K.C.: Grid-based template matching for people counting. In: IEEE 9th Workshop on Multimedia Signal Processing, MMSP 2007, pp. 316–319 (October 2007)
Kawulok, M., Nalepa, J.: Support vector machines training data selection using a genetic algorithm. In: Gimel’farb, G., et al. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 557–565. Springer, Heidelberg (2012)
Kawulok, M., Szymanek, J.: Precise multi-level face detector for advanced analysis of facial images. IET Image Processing 6(2), 95–103 (2012)
Kawulok, M., Wu, J., Hancock, E.R.: Supervised relevance maps for increasing the distinctiveness of facial images. Pattern Recognition 44(4), 929–939 (2011), http://www.sciencedirect.com/science/article/pii/S0031320310004942
Lagodzinski, P., Smolka, B.: Application of the extended distance transformation in digital image colorization. Multimedia Tools and App. 69(1), 111–137 (2014), http://dx.doi.org/10.1007/s11042-012-1246-2
Maddalena, L., Petrosino, A., Russo, F.: People counting by learning their appearance in a multi-view camera environment. Patt. Recogn. Lett. 36, 125–134 (2014), http://www.sciencedirect.com/science/article/pii/S0167865513003796
Nalepa, J., Blocho, M.: Co-operation in the parallel memetic algorithm. International Journal of Parallel Programming, 1–28 (2014), http://dx.doi.org/10.1007/s10766-014-0343-4
Nalepa, J., Kawulok, M.: Fast and accurate hand shape classification. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B. z. (eds.) BDAS 2014. CCIS, vol. 424, pp. 364–373. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-319-06932-6_35
Schofield, A.J., Mehta, P.A., Stonham, T.J.: A system for counting people in video images using neural networks to identify the background scene. Pattern Recognition 29(8), 1421–1428 (1996), http://www.sciencedirect.com/science/article/pii/0031320395001638
Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. of Vis. Commun. and Image Represent 25(5), 1056–1063 (2014)
Su, C.W., Liao, H.Y.M., Tyan, H.R.: A vision-based people counting approach based on the symmetry measure. In: IEEE International Symposium on Circuits and Systems, ISCAS 2009, pp. 2617–2620 (May 2009)
Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: Proc IEEE Int. Conf. on Computer Vision, vol. 2, pp. 734–741 (2003)
Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. International Journal of Computer Vision 75(2), 247–266 (2007), http://dx.doi.org/10.1007/s11263-006-0027-7
Yahiaoui, T., Meurie, C., Khoudour, L., Cabestaing, F.: A people counting system based on dense and close stereovision. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 59–66. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-69905-7_7
Zhao, T., Nevatia, R.: Bayesian human segmentation in crowded situations. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II–459–II–466 (June 2003)
Zhao, X., Delleandrea, E., Chen, L.: A people counting system based on face detection and tracking in a video. In: Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2009, pp. 67–72 (September 2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nalepa, J., Szymanek, J., Kawulok, M. (2015). Real-Time People Counting from Depth Images. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. BDAS 2015. Communications in Computer and Information Science, vol 521. Springer, Cham. https://doi.org/10.1007/978-3-319-18422-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-18422-7_34
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18421-0
Online ISBN: 978-3-319-18422-7
eBook Packages: Computer ScienceComputer Science (R0)