Skip to main content

Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic Segmentation

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9087))

Abstract

Semantic segmentation aims at jointly computing a segmentation and a semantic labeling of the image plane. The main ingredient is an efficient feature selection strategy. In this work we perform a systematic information-theoretic evaluation of existing features in order to address the question which and how many features are appropriate for an efficient semantic segmentation. To this end, we discuss the tradeoff between relevance and redundancy and present an information-theoretic feature evaluation strategy. Subsequently, we perform a systematic experimental validation which shows that the proposed feature selection strategy provides state-of-the-art semantic segmentations on five semantic segmentation datasets at significantly reduced runtimes. Moreover, it provides a systematic overview of which features are the most relevant for various benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergbauer, J., Nieuwenhuis, C., Souiai, M., Cremers, D.: Proximity priors for variational semantic segmentation and recognition. In: ICCV Workshop (2013)

    Google Scholar 

  2. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM Journal on Imaging Sciences 5(4), 1113–1158 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Couprie, C., Farabet, C., Najman, L., LeCun, Y.: Indoor semantic segmentation using depth information. In: Int. Conf. on Learning Representations (2013)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Int. Conf. on Comp. Vision and Pattern Recog. (2005)

    Google Scholar 

  5. Fröhlich, B., Rodner, E., Denzler, J.: Semantic segmentation with millions of features: integrating multiple cues in a combined random forest approach. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 218–231. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. He, X., Zemel, R.S., Carreira-Perpindn, M.A.: Multiscale conditional random fields for image labeling. In: Int. Conf. on Comp. Vision and Pattern Recog. (2004)

    Google Scholar 

  7. Hermans, A., Floros, G., Leibe, B.: Dense 3D semantic mapping of indoor scenes from RGB-D images. In: Int. Conf. on Robotics and Automation (2014)

    Google Scholar 

  8. Korč, F., Förstner, W.: eTRIMS Image Database for Interpreting Images of Man-Made Scenes. Technical report, Department of Photogrammetry, University of Bonn (2009)

    Google Scholar 

  9. Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Graph cut based inference with co-occurrence statistics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 239–253. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Lowe, D.: Object recognition from local scale-invariant features. In: Int. Conf. on Comp. Vision (1999)

    Google Scholar 

  11. Nieuwenhuis, C., Strekalovskiy, E., Cremers, D.: Proportion priors for image sequence segmentation. In: Int. Conf. on Comp. Vision (2013)

    Google Scholar 

  12. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Trans. on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  13. Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context. Int. Journal of Comp. Vision 81(1), 2–23 (2009)

    Article  Google Scholar 

  15. Silberman, N., Fergus, R.: Indoor Scene segmentation using a structured Light Sensor. In: ICCV Workshop on 3D Representation and Recognition (2011)

    Google Scholar 

  16. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Souiai, M., Nieuwenhuis, C., Strekalovskiy, E., Cremers, D.: Convex optimization for scene understanding. In: ICCV Workshop (2013)

    Google Scholar 

  18. Souiai, M., Strekalovskiy, E., Nieuwenhuis, C., Cremers, D.: A co-occurrence prior for continuous multi-label optimization. In: Int. Conf. on Energy Minimization Methods for Comp. Vision and Pattern Recog. (2013)

    Google Scholar 

  19. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Int. Conf. on Comp. Vision and Pattern Recog. (2001)

    Google Scholar 

  20. Yao, J., Fidler, S., Urtasun, R.: Describing the scene as a whole: joint object detection, scene classification and semantic segmentation. In: Int. Conf. on Comp. Vision and Pattern Recog. (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caner Hazırbaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hazırbaş, C., Diebold, J., Cremers, D. (2015). Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic Segmentation. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18461-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18460-9

  • Online ISBN: 978-3-319-18461-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics