Abstract
The relations between linear system theory and mathematical morphology are mainly understood on a pure convolution / dilation level. A formal connection on the level of differential or pseudo-differential equations is still missing. In our paper we close this gap. We establish the sought relation by means of infinitesimal generators, exploring essential properties of the slope and a modified Cramér transform. As an application of our general theory, we derive the morphological counterparts of relativistic scale-spaces and of \(\alpha \)-scale-spaces for \(\alpha \in [\frac{1}{2}, \infty )\). Our findings are illustrated by experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M.: Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)
Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 125–128, San Francisco, CA (March 1992)
Burgeth, B., Didas, S., Weickert, J.: The Bessel Scale-Space. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 84–95. Springer, Heidelberg (2005)
Burgeth, B., Didas, S., Weickert, J.: Relativistic scale-spaces. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 1–12. Springer, Heidelberg (2005)
Burgeth, B., Weickert, J.: An explanation for the logarithmic connection between linear and morphological system theory. International Journal of Computer Vision 64(2/3), 157–169 (2005)
Didas, S., Burgeth, B., Imiya, A., Weickert, J.: Regularity and scale-space properties of fractional high order linear filtering. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 13–25. Springer, Heidelberg (2005)
Dorst, L., van den Boomgaard, R.: Morphological signal processing and the slope transform. Signal Processing 38, 79–98 (1994)
Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. Journal of Mathematical Imaging and Vision 20, 267–298 (2004)
Felsberg, M., Sommer, G.: Scale adaptive filtering derived from the laplace equation. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 124–131. Springer, Heidelberg (2001)
Florack, L.: Image Structure. Computational Imaging and Vision, vol. 10. Kluwer, Dordrecht (1997)
Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bulletin of the Electrotechnical Laboratory 26, 368–388 (1962). (In Japanese)
Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)
Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)
Lyons, R.G.: Understanding Digital Signal Processing. Prentice Hall, Englewood Cliffs (2004)
Maragos, P.: Morphological systems: Slope transforms and max-min difference and differential equations. Signal Processing 38(1), 57–77 (1994)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
van den Boomgaard, R.: The morphological equivalent of the Gauss convolution. Nieuw Archief Voor Wiskunde 10(3), 219–236 (1992)
van den Boomgaard, R., Dorst, L.: The morphological equivalent of Gaussian scale-space. In: Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.) Gaussian Scale-Space Theory. Computational Imaging and Vision, vol. 8, pp. 203–220. Kluwer, Dordrecht (1997)
van den Boomgaard, R., Smeulders, A.: The morphological structure of images: The differential equations of morphological scale-space. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 1101–1113 (1994)
Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision 10(3), 237–252 (1999)
Witkin, A.P.: Scale-space filtering. In: Proc. Eighth International Joint Conference on Artificial Intelligence, vol. 2, pp. 945–951, Karlsruhe, West Germany (August 1983)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Schmidt, M., Weickert, J. (2015). The Morphological Equivalents of Relativistic and Alpha-Scale-Spaces. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-18461-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18460-9
Online ISBN: 978-3-319-18461-6
eBook Packages: Computer ScienceComputer Science (R0)