Skip to main content

Binarization Methods for Shuffled Frog Leaping Algorithms That Solve Set Covering Problems

  • Conference paper
Software Engineering in Intelligent Systems

Abstract

This work proposes Shuffled Frog Leaping Algorithms (SFLAs) to solve Set Covering Problems (SCPs). The proposed algorithms include eight transfer function and five discretization methods in order to solve the binary representation of SCP. Different instances of the Set Covering Problem are solved to test our algorithm showing very promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Foster, B.A., Ryan, D.M.: An integer programming approach to the vehicle scheduling problem. Operational Research Quarterly 27, 367–384 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beasley, J., Chu, P.: A genetic algorithm for the set covering problem. European Journal of Operational Research 94(2), 392–404 (1996)

    Article  MATH  Google Scholar 

  3. Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A.: Logical analysis of numerical data. Math. Program. 79, 163–190 (1997)

    MATH  MathSciNet  Google Scholar 

  4. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Operations Research 47(5), 730–743 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Constantine, T., Ralph, S., Charles, R., Lawrence, B.: The location of emergency service facilities. Operations Research 19, 1363–1373 (1971)

    Article  MATH  Google Scholar 

  6. Crawford, B., Soto, R., Cuesta, R., Paredes, F.: Application of the Artificial Bee Colony Algorithm for Solving the Set Covering Problem. The Scientific World Journal 2014, 8 (2014)

    Article  Google Scholar 

  7. Crawford, B., Soto, R., Olivares-Suárez, M., Paredes, F.: A Binary Firefly Algorithm for the Set Covering Problem. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Modern Trends and Techniques in Computer Science. AISC, vol. 285, pp. 65–73. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Ebrahimi, J., Hosseinian, S., Gharehpetian, G.: G.b. gharehpetian, unit commitment problem solution using shuffled frog leaping algorithm. IEEE Transaction on Power Systems 26, 573–581 (2011)

    Article  Google Scholar 

  9. Elbehairy, H., Elbeltagi, E., Hegazy, T.: Comparison of two evolutionary algorithms for optimization of bridge deck repairs. Computer-Aided Civil and Infrastructure Engineering 21, 561–572 (2006)

    Article  Google Scholar 

  10. Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics 19, 43–53 (2005)

    Article  Google Scholar 

  11. Eusuff, M., Lansey, K.: Optimization of water distribution network design usingthe shuffled frog leaping algorithm. Journal of Water Resource Plan Management 129, 210–225 (2003)

    Article  Google Scholar 

  12. Eusuff, M., Lansey, K., Pasha, F.: Shuffled frog-leaping algorithm: a memeticmeta-heuristic for discrete optimization. Engineering Optimization 38, 129–154 (2006)

    Article  MathSciNet  Google Scholar 

  13. Vasko, F.J., Wolf, F.E., Stott, K.L.: A set covering approach to metallurgical grade assignment. European Journal of Operational Research 38(1), 27–34 (1989)

    Article  MathSciNet  Google Scholar 

  14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Conf. Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  15. Fisher, M.L., Rosenwein, M.B.: An interactive optimization system for bulk-cargo ship scheduling. Naval Research Logistics 36, 27–42 (1989)

    Article  Google Scholar 

  16. Liong, S., Atiquzzaman, M.: Optimal design of water distribution network usingshuffled complex evolution. Journal of Instrumentation Engineering 44, 93–107 (2004)

    Google Scholar 

  17. Luo, X., Yang, Y., Li, X.: Solving tsp with shuffled frog-leaping algorithm. In: Proc. ISDA, vol. 3, pp. 228–232 (2008)

    Google Scholar 

  18. Smith, B.M.: Impacs - a bus crew scheduling system using integer programming. Mathematical Programming 42(1-3), 181–187 (1998)

    Article  Google Scholar 

  19. Rahimi-Vahed, A., Mirzaei, A.: Solving a bi-criteria permutation flow-shop problem using shuffled frog-leaping algorithm. Soft Computing (2007)

    Google Scholar 

  20. Valenzuela, C., Crawford, B., Soto, R., Monfroy, E., Paredes, F.: A 2-level metaheuristic for the set covering problem. International Journal of Computers Communications and Control 7(2), 377–387 (2012)

    Article  Google Scholar 

  21. Wang, L., Fang, C.: An effective shuffled frog-leaping algorithm for multi-modre source-constrained project scheduling problem. Information Sciences 181, 4804–4822 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Broderick Crawford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Crawford, B. et al. (2015). Binarization Methods for Shuffled Frog Leaping Algorithms That Solve Set Covering Problems. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Software Engineering in Intelligent Systems. Advances in Intelligent Systems and Computing, vol 349. Springer, Cham. https://doi.org/10.1007/978-3-319-18473-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18473-9_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18472-2

  • Online ISBN: 978-3-319-18473-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics