Abstract
One of the most challenging factors in face recognition is pose variation. This paper proposes an appropriate framework to identify images across pose. The input profile image is classified to a pose range. After that, this image is matched with the same pose range images from a certain database to determine its identification. In this framework, descriptors which are based on Local Binary Patterns are used to extract features of all images. Experiments on the FERET database prove the robustness of the proposed framework based on comparison with other approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D face recognition: A survey. Pattern Recognition Letters 28(14), 1885–1906 (2007)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)
Beymer, D., Poggio, T.: Face recognition from one example view. In: Proceedings of the Fifth International Conference on Computer Vision, pp. 500–507. IEEE (1995)
Beymer, D.J.: Face recognition under varying pose. In: Proceedings of the 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1994, pp. 756–761. IEEE (1994)
Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1063–1074 (2003)
Bolme, D.S., Beveridge, J.R., Teixeira, M., Draper, B.A.: The CSU face identification evaluation system: Its purpose, features, and structure. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 304–313. Springer, Heidelberg (2003)
Cao, D., Chen, C.: Hot or Not? (2011), http://www.csee.wvu.edu/~gidoretto/courses/2011-fall-cp/assignments/final_project/results/cao_chen/index.html (Online; accessed July 20, 2014)
Shin, H.C., Park, J.H., Kim, S.D.: Combination of warping robust elastic graph matching and kernel-based projection discriminant analysis for face recognition. IEEE Transaction on Multimedia 9(6), 1125–1136 (2007)
Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. In: Bigün, J., Borgefors, G., Chollet, G. (eds.) AVBPA 1997. LNCS, vol. 1206, pp. 125–142. Springer, Heidelberg (1997), http://dx.doi.org/10.1007/BFb0015988
Gao, Y., Leung, M., Wang, W., Hui, S.: Fast face identification under varying pose from a single 2-D model view. IEE Proceedings-Vision, Image and Signal Processing 148(4), 248–253 (2001)
Gross, R., Matthews, I., Baker, S.: Appearance-based face recognition and light-fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(4), 449–465 (2004)
Huang, J., Yuen, P.C., Chen, W.S., Lai, J.H.: Choosing parameters of kernel subspace lda for recognition of face images under pose and illumination variations. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 37(4), 847–862 (2007)
Ishiyama, R., Hamanaka, M., Sakamoto, S.: An appearance model constructed on 3-D surface for robust face recognition against pose and illumination variations. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 35(3), 326–334 (2005)
Jiang, D., Hu, Y., Yan, S., Zhang, L., Zhang, H., Gao, W.: Efficient 3D reconstruction for face recognition. Pattern Recognition 38(6), 787–798 (2005)
Lawrence, S., Giles, C., Tsoi, A.C., Back, A.: Face recognition: a convolutional neural-network approach. IEEE Transactions on Neural Networks 8(1), 98–113 (1997)
Li, S.Z., Jain, A.K.: Handbook of face recognition (2011)
Moore, S., Bowden, R.: Local binary patterns for multi-view facial expression recognition. Computer Vision and Image Understanding 115(4), 541–558 (2011), http://www.sciencedirect.com/science/article/pii/S1077314210002511
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996), http://www.sciencedirect.com/science/article/pii/0031320395000674
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)
Wagner, P.: Aligning face images (2012), http://www.bytefish.de/blog/aligning_face_images/ (Online; accessed July 12, 2014)
Zhang, X., Gao, Y.: Face recognition across pose: A review. Pattern Recognition 42(11), 2876–2896 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nguyen, NQ.H., Le, T.H. (2015). Pose Estimation Using Local Binary Patterns for Face Recognition. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Artificial Intelligence Perspectives and Applications. Advances in Intelligent Systems and Computing, vol 347. Springer, Cham. https://doi.org/10.1007/978-3-319-18476-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-18476-0_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18475-3
Online ISBN: 978-3-319-18476-0
eBook Packages: EngineeringEngineering (R0)