Skip to main content

Performance of LDPC Decoding Algorithms with a Statistical Physics Theory Approach

  • Conference paper
Codes, Cryptology, and Information Security (C2SI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9084))

  • 1013 Accesses

Abstract

In 1989, N.Sourlas used the parallel that exists between the information theory and the statistical physics to bring out that low density parity check (LDPC) codes correspond to spins glass models. Such a correspondence is contributing nowadays to the similarity between the statistical physics and the error correcting codes. Hence, the statistical physics methods have been applied to study the properties of these codes. Among these methods the Thouless-Anderson-Palmer (TAP) is an approach which is proved to be similar to the Belief Propagation (BP) algorithm. Unfortunately, there are no studies made for the other decoding algorithms.

The main purpose of this paper is to provide a statistical physics analysis of LDPC codes performance. First, we investigate the Log-Likelihood Ratios-Belief Propagation (LLR-BP) algorithm as well as its simplified versions the BP-Based algorithm and the λ-min algorithm with the TAP approach. Second, we evaluate the performances of these codes in terms of a statistical physics parameter called the magnetization on the Additive White Gaussian Noise (AWGN) channel. Simulation results obtained in terms of the magnetization show that the λ-min algorithm reduces the complexity of decoding and gets close to LLR-BP performance. Finally, we compare our LLR-BP results with those of the replica method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. European Telecommunications Standards Institude (ETSI). Digital Video Broadcasting (DVB) Second generation framing structure for broadband satellite applications; Part2: DVB-S2 Extensions (DVB-S2X), EN 302 307-2 (V1.1.1), https://www.dvb.org/standards/dvb-s2x

  2. Mackay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE Trans. Inform. Theory 45, 399–431 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fossorier, M.P.C., Mihaljevic, M., Imai, I.: Reduced complexity iterative decoding of low density parity check codes based on belief propagation. IEEE Trans. Commun. 47, 673–680 (1999)

    Article  Google Scholar 

  4. Guilloud, F., Boutillon, E., Danger, J.L.: λ-min decoding algorithm of regular and irregular LDPC codes. In: Proc. 3rd Int. Symp. on Turbo Codes & Related Topics (ISTC 2003), pp.451–454. Brest (2003)

    Google Scholar 

  5. Sourlas, N.: Spin glass models as error correcting codes. Nature 339, 693–695 (1989)

    Article  Google Scholar 

  6. Skantzos, N.S., Van Mourik, J., Saad, D.: Magnetization enumerator of real-valued symmetric channels in Gallager error-correcting codes. Phys. Rev. E 67, 037101 (2003)

    Google Scholar 

  7. Mezard, M., Montanari, A.: Information, Physics and Computation. Oxford university Press (2009)

    Google Scholar 

  8. Huang, H.: Code optimization, frozen glassy phase and improved decoding algorithms for low-density parity-check codes. Commun. Theor. Phys. 63, 115–127 (2015)

    Article  MATH  Google Scholar 

  9. Neri, I., Skantzos, N.S., Boll, D.: Gallager error-correcting codes for binary asymmetric channels. J. Stat. Mech. 2008, P10018 (2008)

    Google Scholar 

  10. Neri, I., Skantzos, N.S.: On the equivalence of Ising models on small-world networks and LDPC codes on channels with memory. J. Phys. A: Math and Theor. 47, 385002 (2014)

    Article  MathSciNet  Google Scholar 

  11. Murayama, T., Kabashima, Y., Saad, D., Vicente, R.: Statistical physics of regular low-density parity-check error-correcting codes. Phys. Rev. E 62, 1577–1591 (2000)

    Article  Google Scholar 

  12. Kabashima, Y., Saad, D.: Belief propagation vs TAP for decoding corrupted messages. Eurphys. Lett. 44, 668–674 (1998)

    Article  Google Scholar 

  13. Thouless, D.J., Anderson, P.W., Palmer, R.G.: Solution of solvable model of a spin glass. Phil. Mag. 35, 593–601 (1977)

    Article  Google Scholar 

  14. Vicente, R., Saad, D., Kabashima, Y.: Finite-connectivity systems as error-correcting codes. Phys. Rev. E 60, 5352–5366 (1999)

    Article  MathSciNet  Google Scholar 

  15. Mackay, D.J.C.: Ldpc database, http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Abdelhedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Abdelhedi, M., Hamdi, O., Bouallegue, A. (2015). Performance of LDPC Decoding Algorithms with a Statistical Physics Theory Approach. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E. (eds) Codes, Cryptology, and Information Security. C2SI 2015. Lecture Notes in Computer Science(), vol 9084. Springer, Cham. https://doi.org/10.1007/978-3-319-18681-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18681-8_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18680-1

  • Online ISBN: 978-3-319-18681-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics