Abstract
The paper presents an automatic approach to the analysis of images of breast cancer tissue stained with HER2 antibody. It applies the advanced morphological tools to build the system for recognition of the cell nuclei and the membrane localizations. The final results of image processing is the computerized method of estimation of the membrane staining continuity. The important point in this approach is application of the hourglass shapes in rank grey-level hit-or-miss transform of the image. The experimental results performed on 15 cases have shown high accuracy of the nuclei and membrane localizations. The mean absolute error of continuity estimation of the stained membrane between the expert and our system results was 6.1% at standard deviation of 3.2%. These results confirm high efficiency of the proposed solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Littlejohns, P.: Trastuzumab for early breast cancer: evolution or revolution? Lancet Oncology 7(1), 22–33 (2006)
Les, T., Markiewicz, T., Osowski, S., Cichowicz, M., Kozlowski, W.: Automatic evaluation system of FISH images in breast cancer. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 332–339. Springer, Heidelberg (2014)
Lezoray, O., Elmoataz, A., Cardot, H., Gougeon, G., Lecluse, M., Elie, H., Revenu, M.: Segmentation of colour images from serous cytology for automated cell classification. Anal. Quant. Cytol. Histol. 22, 311–322 (2000)
Grala, B., Markiewicz, T., Kozlowski, W., et al.: New automated image analysis method for the assessment of Ki-67 labeling index in meningiomas. Folia Histochemica et Cytobiologica 47(4), 587–592 (2009)
Kim, Y.R., Choi, J.R., Song, K.S., Chong, W.H., Lee, H.D.: Evaluation of HER2/neu status by real-time quantitative PCR in breast cancer. Yonsei Med. J. 43(3), 335–340 (2002)
Pezoa, R., Rojas-Moraleda, R., Salinas, L.: Automatic membrane segmentation of IHC images enables the analysis of cancer breast tissues. In: Third Chilean Meeting on Biomedical Engineering, pp. 1–6. JCIB, Santiago (2012)
Tabakov, M., Kozak, P.: Segmentation of histopathology HER2/neu images with fuzzy decision tree and Takagi-Sugeno reasoning. Comput. Biol. Med. 49, 19–29 (2014)
Soille, P.: Morphological Image Analysis, Principles and Applications. Springer, Berlin (2003)
Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms Part I:Unified theory. Pattern Recogn. 40, 635–647 (2007)
PATHWAY HER-2/neu (4B5) – user manual. Ventana Medical Systems, Tucson (2009)
Gonzalez, R., Woods, R.: Digital image processing. Prentice Hall, New Jersey (2008)
Schölkopf, B., Smola, A.: Learning with kernels. MIT Press, Cambridge (2002)
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to data mining. Pearson Education Inc., Boston (2006)
Matlab Image Processing Toolbox, user’s guide. MathWorks, Natick (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wdowiak, M., Markiewicz, T., Osowski, S., Swiderska, Z., Patera, J., Kozlowski, W. (2015). Hourglass Shapes in Rank Grey-Level Hit-or-miss Transform for Membrane Segmentation in HER2/neu Images. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-18720-4_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18719-8
Online ISBN: 978-3-319-18720-4
eBook Packages: Computer ScienceComputer Science (R0)