Skip to main content

Exact Linear Time Euclidean Distance Transforms of Grid Line Sampled Shapes

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2015)

Abstract

We propose a method for computing, in linear time, the exact Euclidean distance transform of sets of points s.t. one coordinate of a point can be assigned any real value, whereas other coordinates are restricted to discrete sets of values. The proposed distance transform is applicable to objects represented by grid line sampling, and readily provides sub-pixel precise distance values. The algorithm is easy to implement; we present complete pseudo code. The method is easy to parallelize and extend to higher dimensional data. We present two ways of obtaining approximate grid line sampled representations, and evaluate the proposed EDT on synthetic examples. The method is competitive w.r.t. state-of-the-art methods for sub-pixel precise distance evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciesielski, K.C., Chen, X., Udupa, J.K., Grevera, G.J.: Linear time algorithms for exact distance transform. Journal Math. Imaging and Vision 39(3), 193–209 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algorithms: A comparative survey. ACM Computing Surveys 40(1), 2 (2008)

    Article  Google Scholar 

  3. Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Tech. rep., Cornell University (2004)

    Google Scholar 

  4. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Theory of Computing 8(1), 415–428 (2012)

    Article  MathSciNet  Google Scholar 

  5. Freeman, H.: On the encoding of arbitrary geometric configurations. Electronic Computers, IRE Trans. (2), 260–268 (1961)

    Google Scholar 

  6. Gustavson, S., Strand, R.: Anti-aliased Euclidean distance transform. Pattern Recognition Letters 32(2), 252–257 (2011)

    Article  Google Scholar 

  7. Hirata, T.: A unified linear-time algorithm for computing distance maps. Information Processing Letters 58(3), 129–133 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jones, M., Baerentzen, J., Sramek, M.: 3D distance fields: A survey of techniques and applications. IEEE Trans. Visualization Comp. Graphics 12(4), 581–599 (2006)

    Article  Google Scholar 

  9. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  10. Kimmel, R., Kiryati, N., Bruckstein, A.: Sub-pixel distance maps and weighted distance transforms. Journal Math. Imaging and Vision 6(2-3), 223–233 (1996)

    Article  MathSciNet  Google Scholar 

  11. Krissian, K., Westin, C.F.: Fast sub-voxel re-initialization of the distance map for level set methods. Pattern Recognition Letters 26(10), 1532–1542 (2005)

    Article  Google Scholar 

  12. Linnér, E., Strand, R.: Anti-aliased Euclidean distance transform on 3D sampling lattices. In: Proc. Discrete Geom. for Comp. Imagery., Siena, Italy, pp. 88–98 (2014)

    Google Scholar 

  13. Linnér, E., Strand, R.: A graph-based implementation of the anti-aliased Euclidean distance transform. In: Proc. Int. Conf. Pattern Recognition, Stockholm, Sweden, pp. 1025–1030 (2014)

    Google Scholar 

  14. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  15. Malmberg, F., Lindblad, J., Sladoje, N., Nyström, I.: A graph-based framework for sub-pixel image segmentation. Theoretical Comp. Sci. 412(15), 1338–1349 (2011)

    Article  MATH  Google Scholar 

  16. Maurer Jr., C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)

    Article  Google Scholar 

  17. Meijster, A., Roerdink, J.B., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Proc. Math. Morph. and its Appl. to Image Signal Process. Comput. Imaging and Vision, vol. 18, pp. 331–340. Springer (2000)

    Google Scholar 

  18. Rockett, P.: The accuracy of sub-pixel localisation in the canny edge detector. In: Proc. British Machine Vision Conf., pp. 1–10 (1999)

    Google Scholar 

  19. Sladoje, N., Lindblad, J.: High-precision boundary length estimation by utilizing gray-level information. IEEE Trans. Patt. Anal. Mach. Intell. 31(2), 357–363 (2009)

    Article  Google Scholar 

  20. Sladoje, N., Lindblad, J.: The coverage model and its use in image processing. In: Zbornik Radova, vol. (23), pp. 39–117. Matematički institut SANU (2012)

    Google Scholar 

  21. Stelldinger, P.: Image digitization and its influence on shape properties in finite dimensions, vol. 312. Ph.D. thesis. IOS Press (2008)

    Google Scholar 

  22. Vacavant, A., Coeurjolly, D., Tougne, L.: Distance transformation on two-dimensional irregular isothetic grids. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 238–249. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joakim Lindblad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lindblad, J., Sladoje, N. (2015). Exact Linear Time Euclidean Distance Transforms of Grid Line Sampled Shapes. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_54

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics