Skip to main content

A Comparison Between Extinction Filters and Attribute Filters

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9082))

Abstract

Attribute filters and extinction filters are connected filters used to simplify greyscale images. The first kind is widely explored in the image processing literature, while the second is not much explored yet. Both kind of filters can be efficiently implemented on the max-tree. In this work, we compare these filters in terms of processing time, simplification of flat zones and reduction of max-tree nodes. We also compare their influence as a pre-processing step before extracting affine regions used in matching and pattern recognition. We perform repeatability tests using extinction filters and attribute filters, set to preserve the same number of extrema, as a pre-processing step before detecting Hessian-Affine and Maximally Stable Extremal Regions (MSER) affine regions. The results indicate that using extinction filters as pre-processing obtain a significantly higher (more than 5% on average) number of correspondences on the repeatability tests than the attribute filters. The results in processing natural images show that preserving 5% of images extrema using extinction filters achieve on average 95% of the number of correspondences compared to applying the affine region detectors directly to the unfiltered images, and the average number of max-tree nodes is reduced by a factor greater than 3. Therefore, we can conclude that extinction filters are better than attribute filters with respect to preserving the number of correspondences found by affine detectors, while simplifying the max-tree structure. The use of extinction filters as a pre-processing step is recommended to accelerate image recognition tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Transactions on Image Processing 4(8), 1153–1160 (1995), doi:10.1109/83.403422.

    Article  Google Scholar 

  2. Salembier, P., Wilkinson, M.: Connected operators. IEEE Signal Processing Magazine 26(6), 136–157 (2009), doi:10.1109/MSP.2009.934154

    Article  Google Scholar 

  3. Jones, R.: Connected Filtering and Segmentation Using Component Trees. Computer Vision and Image Understanding 75, 215–228 (1999)

    Article  Google Scholar 

  4. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998), doi:10.1109/83.663500

    Article  Google Scholar 

  5. Souza, R., Rittner, L., Machado, R., Lotufo, R.: Maximal Max-Tree Simplification. In: 22nd International Conference on Pattern Recognition (ICPR), pp.3132–3137 (August 2014), doi: 10.1109/ICPR.2014.540

    Google Scholar 

  6. Berger, Ch., Geraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.:Effective Component Tree Computation with Application to Pattern Recognition in Astronomical Imaging. In: IEEE International Conference on Image Processing, vol. 4, pp. IV-41–IV-44 (2007), doi: 10.1109/ICIP.2007.4379949

    Google Scholar 

  7. Najman, L., Couprie, M.: Building the Component Tree in Quasi-Linear Time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006), doi:10.1109/TIP.2006.877518

    Article  Google Scholar 

  8. Wilkinson, M., Gao, H., Hesselink, W., Jonker, J., Meijster, A.: Concurrent Computation of Attribute Filters on Shared Memory Parallel Machines. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1800–1813 (2008), doi:10.1109/TPAMI.2007.70836

    Article  Google Scholar 

  9. Carlinet, E., Geraud, T.: A Comparative Review of Component Tree Computation Algorithms. IEEE Transactions on Image Processing 23(9), 3885–3895 (2014), doi:10.1109/TIP.2014.2336551

    Article  MathSciNet  Google Scholar 

  10. Salembier, P., Oliveras, A., Maragos, P., Schafer, R., Butt, M.: Practical extensions of connected operators. In: Proc. Int. Symp. Mathematical Morphology, pp. 97–110 (1996)

    Google Scholar 

  11. Vincent, L.: Morphological Area Opening and Closings for Greyscale Images. In: Proc. Shape in Picture, 92-NATO Workshop (1992)

    Google Scholar 

  12. Vachier, C.: Extinction value: a new measurement of persistence. In: IEEE Workshop on Nonlinear Signal and Image Processing, vol. I, pp. 254–257 (1995)

    Google Scholar 

  13. Grimaud, M.: A new measure of contrast: dynamics. In: Proc. SPIE, vol. 1769, pp. 292–305 (1992)

    Google Scholar 

  14. Silva, A., Lotufo, R.: New Extinction Values from Efficient Construction and Analysis of Extended Attribute Component Tree. In: XXI Brazilian Symposium on Computer Graphics and Image Processing, October 12-15, pp. 204–211 (2008), doi:10.1109/SIBGRAPI.2008.8

    Google Scholar 

  15. Xu, Y., Geraud, T., Najman, L.: Morphological filtering in shape spaces: Applications using tree-based image representations. In: 21st International Conference on Pattern Recognition (ICPR), November 11-15, pp. 485–488 (2012)

    Google Scholar 

  16. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, pp. 384–393 (2002)

    Google Scholar 

  17. Donoser, M., Bischof, H.: Efficient Maximally Stable Extremal Region (MSER) Tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 17-22, vol. 1, pp. 553–560 (2006), doi: 10.1109/CVPR.2006.107

    Google Scholar 

  18. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65 (2005)

    Google Scholar 

  20. Wang, Z., Bovik, C., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Souza, R., Rittner, L., Machado, R., Lotufo, R. (2015). A Comparison Between Extinction Filters and Attribute Filters. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics