Abstract
In this article, we study countable sofic shifts of Cantor-Bendixson rank at most 2. We prove that their conjugacy problem is complete for \(\mathsf {GI}\), the complexity class of graph isomorphism, and that the existence problems of block maps, factor maps and embeddings are \(\mathsf {NP}\)-complete.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
There is a common period \(p \in \mathbb {N}\) for the configurations in \(Y\), and if this period breaks infinitely many times in the right tail of \(x\), then \(X_i^R\) is not contained in \(Y\).
- 2.
From Proposition 2, one can extract that in the rank \(1\) case, conjugacy of edge shifts is equivalent to the graphs defining them being isomorphic.
References
Ballier, A., Durand, B., Jeandel, E.: Structural aspects of tilings. In: Weil, P., Albers, S. (eds.) Proceedings of the 25th Annual Symposium on the Theoretical Aspects of Computer Science, Bordeaux, France, pp. 61–72. IBFI Schloss Dagstuhl, February 2008
Ballier, A., Jeandel, E.: Structuring multi-dimensional subshifts. ArXiv e-prints, September 2013
Biedl, T.: The complexity of domino tiling. In: Proceedings of the 17th Canadian Conference on Computational Geometry, pp. 187–190 (2005)
Boyle, M.: Open problems in symbolic dynamics. In: Geometric and Probabilistic Structures in Dynamics. Contemp. Math., vol. 469, pp. 69–118. Amer. Math. Soc., Providence (2008)
Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press, Cambridge (1985)
Hell, P., Nešetřil, J.: On the complexity of \(H\)-coloring. J. Combin. Theory Ser. B 48(1), 92–110 (1990)
Jeandel, E., Vanier, P.: Hardness of conjugacy and factorization of multidimensional subshifts of finite type. CoRR, abs/1204.4988 (2012)
Kannan, S., Sweedyk, E., Mahaney, S.: Counting and random generation of strings in regular languages. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 1995), pp. 551–557. ACM, New York (1995)
Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995)
Pavlov, R., Schraudner, M.: Classification of sofic projective subdynamics of multidimensional shifts of finite type (submitted)
Salo, V., Törmä, I.: Computational aspects of cellular automata on countable sofic shifts. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 777–788. Springer, Heidelberg (2012)
Salo, V., Törmä, I.: Constructions with countable subshifts of finite type. Fundamenta Informaticae 126(2–3), 263–300 (2013)
Vikas, N.: Computational complexity of graph compaction. ProQuest LLC, Ann Arbor (1997). Thesis (Ph.D.)-Simon Fraser University (Canada)
Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: The graph isomorphism problem. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 118, 83–158, 215 (1982). The theory of the complexity of computations, I
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Salo, V., Törmä, I. (2015). Complexity of Conjugacy, Factoring and Embedding for Countable Sofic Shifts of Rank 2. In: Isokawa, T., Imai, K., Matsui, N., Peper, F., Umeo, H. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2014. Lecture Notes in Computer Science(), vol 8996. Springer, Cham. https://doi.org/10.1007/978-3-319-18812-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-18812-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18811-9
Online ISBN: 978-3-319-18812-6
eBook Packages: Computer ScienceComputer Science (R0)