Abstract
We study the strict majority bootstrap percolation process on graphs. Vertices may be active or passive. Initially, active vertices are chosen independently with probability \(p\). Each passive vertex \(v\) becomes active if at least \(\lceil \frac{deg(v)+1}{2} \rceil \) of its neighbors are active (and thereafter never changes its state). If at the end of the process all vertices become active then we say that the initial set of active vertices percolates on the graph. We address the problem of finding graphs for which percolation is likely to occur for small values of \(p\). For that purpose we study percolation on two topologies. The first is an \(n\times n\) toroidal grid augmented with a universal vertex. Also, each vertex \(v\) in the torus is connected to all nodes whose distance to \(v\) is less than or equal to a parameter \(r\). The second family contains all random regular graphs of even degree, also augmented with a universal node. We compare our computational results to those obtained in previous publications for \(r\)-rings and random regular graphs.
This work has been partially supported by CONICYT via Basal in Applied Mathematics (I.R.), Núcleo Milenio Información y Coordinación en Redes ICM/FIC RC130003 (I.R).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balogh, J., Bollobás, B., Morris, R.: Majority bootstrap percolation on the hypercube. Comb. Probab. Comput. 18, 17–51 (2009)
Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30(1–2), 257–286 (2007)
Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C Solid State Phys. 12, L31–L35 (1979)
Aizenman, A., Lebowitz, J.: Metastability effects in bootstrap percolation. J. Phys. A Math. Gen. 21, 3801–3813 (1988)
Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in three dimensions. Ann. Probab. 37(4), 1329–1380 (2009)
Cerf, R., Manzo, F.: The threshold regime of finite volume bootstrap percolation. Stoch. Process. Appl. 101, 69–82 (2002)
Holroyd, A.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theor. Relat. Fields 125(2), 195–224 (2003)
Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)
Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364, 2667–2701 (2012)
Balogh, J., Bollobás, B.: Bootstrap percolation on the hypercube. Prob. Theory Rel. Fields 134, 624–648 (2006)
Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions. Comb. Probab. Comput. 19(5–6), 643–692 (2010)
Van der Hofstad, R., Slade, G.: Asymptotic expansions in \(n^{-1}\) for percolation critical values on the \(n\)-cube and \(\mathbb{Z}^n\). Random Struct. Algorithms 27(3), 331–357 (2005)
Van der Hofstad, R., Slade, G.: Expansion in \(n^{-1}\) for percolation critical values on the \(n\)-cube and \(\mathbb{Z}^n\): the first three terms. Comb. Probab. Comput. 15(5), 695–713 (2006)
Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Comb. Probab. Comput. 15, 715–730 (2006)
Biskup, M., Schonmann, R.H.: Metastable behavior for bootstrap percolation on regular trees. J. Statist. Phys. 136, 667–676 (2009)
Fontes, L.R., Schonmann, R.H.: Bootstrap percolation on homogeneous trees has 2 phase transitions. J. Statist. Phys. 132, 839–861 (2008)
Janson, S.: On percolation in random graphs with given vertex degrees. Electron. J. Probab. 14, 86–118 (2009)
Rapaport, I., Suchan, K., Todinca, I., Verstraete, J.: On dissemination thresholds in regular and irregular graph classes. Algorithmica 59, 16–34 (2011)
Kiwi, M., Moisset de Espanés, P., Rapaport, I., Rica, S., Theyssier, G.: Strict majority bootstrap percolation in the r-wheel. Inf. Process. Lett. 114(6), 277–281 (2014)
Adams, S.S., Bootha, P., Troxell, D.S., Zinnen, S.L.: Modeling the spread of fault in majority-based network systems: dynamic monopolies in triangular grids. Discrete Appl. Math. 160(1011), 1624–1633 (2012)
Adams, S.S., Troxell, D.S., Zinnen, S.L.: Dynamic monopolies and feedback vertex sets in hexagonal grids. Comput. Math. Appl. 62(11), 4049–4057 (2011)
Berger, E.: Dynamic monopolies of constant size. J. Comb. Theor. Ser. B 88(2), 191–200 (2001)
Dreyer, P.A., Roberts, F.S.: Irreversible \(k\)-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math 157(7), 1615–1627 (2009)
Flocchini, P., Geurts, F., Santoro, N.: Optimal irreversible dynamos in chordal rings. Discrete Appl. Math. 113(1), 23–42 (2001)
Flocchini, R., Kralovic, A., Roncato, P., Ruzicka, N.: Santoro on time versus size for monotone dynamic monopolies in regular topologies. J. Discrete Algorithms 1(2), 129–150 (2003)
Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in tori. Discrete Appl. Math. 137(2), 197–212 (2004)
Luccio, F., Pagli, L., Sanossian, H.: Irreversible dynamos in butterflies. In: Proceedings of the 6th International Colloquium on Structural Information and Communication Complexity, pp. 204–218 (1999)
Morris, R.: Minimal percolating sets in bootstrap percolation. Electron. J. Comb. 16(1), 20 (2009). Research Paper 2
Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput. Sci. 282, 231–257 (2002)
Wormald, N.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics, pp. 239–298. Cambridge University Press, Cambridge (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
de Espanés, P.M., Rapaport, I. (2015). Strict Majority Bootstrap Percolation on Augmented Tori and Random Regular Graphs: Experimental Results. In: Isokawa, T., Imai, K., Matsui, N., Peper, F., Umeo, H. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2014. Lecture Notes in Computer Science(), vol 8996. Springer, Cham. https://doi.org/10.1007/978-3-319-18812-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-18812-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18811-9
Online ISBN: 978-3-319-18812-6
eBook Packages: Computer ScienceComputer Science (R0)