Skip to main content

Strict Majority Bootstrap Percolation on Augmented Tori and Random Regular Graphs: Experimental Results

  • Conference paper
  • First Online:
Cellular Automata and Discrete Complex Systems (AUTOMATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8996))

  • 407 Accesses

Abstract

We study the strict majority bootstrap percolation process on graphs. Vertices may be active or passive. Initially, active vertices are chosen independently with probability \(p\). Each passive vertex \(v\) becomes active if at least \(\lceil \frac{deg(v)+1}{2} \rceil \) of its neighbors are active (and thereafter never changes its state). If at the end of the process all vertices become active then we say that the initial set of active vertices percolates on the graph. We address the problem of finding graphs for which percolation is likely to occur for small values of \(p\). For that purpose we study percolation on two topologies. The first is an \(n\times n\) toroidal grid augmented with a universal vertex. Also, each vertex \(v\) in the torus is connected to all nodes whose distance to \(v\) is less than or equal to a parameter \(r\). The second family contains all random regular graphs of even degree, also augmented with a universal node. We compare our computational results to those obtained in previous publications for \(r\)-rings and random regular graphs.

This work has been partially supported by CONICYT via Basal in Applied Mathematics (I.R.), Núcleo Milenio Información y Coordinación en Redes ICM/FIC RC130003 (I.R).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balogh, J., Bollobás, B., Morris, R.: Majority bootstrap percolation on the hypercube. Comb. Probab. Comput. 18, 17–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30(1–2), 257–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C Solid State Phys. 12, L31–L35 (1979)

    Article  Google Scholar 

  4. Aizenman, A., Lebowitz, J.: Metastability effects in bootstrap percolation. J. Phys. A Math. Gen. 21, 3801–3813 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in three dimensions. Ann. Probab. 37(4), 1329–1380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cerf, R., Manzo, F.: The threshold regime of finite volume bootstrap percolation. Stoch. Process. Appl. 101, 69–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Holroyd, A.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theor. Relat. Fields 125(2), 195–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  9. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364, 2667–2701 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Balogh, J., Bollobás, B.: Bootstrap percolation on the hypercube. Prob. Theory Rel. Fields 134, 624–648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions. Comb. Probab. Comput. 19(5–6), 643–692 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Van der Hofstad, R., Slade, G.: Asymptotic expansions in \(n^{-1}\) for percolation critical values on the \(n\)-cube and \(\mathbb{Z}^n\). Random Struct. Algorithms 27(3), 331–357 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Van der Hofstad, R., Slade, G.: Expansion in \(n^{-1}\) for percolation critical values on the \(n\)-cube and \(\mathbb{Z}^n\): the first three terms. Comb. Probab. Comput. 15(5), 695–713 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Comb. Probab. Comput. 15, 715–730 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Biskup, M., Schonmann, R.H.: Metastable behavior for bootstrap percolation on regular trees. J. Statist. Phys. 136, 667–676 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fontes, L.R., Schonmann, R.H.: Bootstrap percolation on homogeneous trees has 2 phase transitions. J. Statist. Phys. 132, 839–861 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Janson, S.: On percolation in random graphs with given vertex degrees. Electron. J. Probab. 14, 86–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rapaport, I., Suchan, K., Todinca, I., Verstraete, J.: On dissemination thresholds in regular and irregular graph classes. Algorithmica 59, 16–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kiwi, M., Moisset de Espanés, P., Rapaport, I., Rica, S., Theyssier, G.: Strict majority bootstrap percolation in the r-wheel. Inf. Process. Lett. 114(6), 277–281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Adams, S.S., Bootha, P., Troxell, D.S., Zinnen, S.L.: Modeling the spread of fault in majority-based network systems: dynamic monopolies in triangular grids. Discrete Appl. Math. 160(1011), 1624–1633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Adams, S.S., Troxell, D.S., Zinnen, S.L.: Dynamic monopolies and feedback vertex sets in hexagonal grids. Comput. Math. Appl. 62(11), 4049–4057 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Berger, E.: Dynamic monopolies of constant size. J. Comb. Theor. Ser. B 88(2), 191–200 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dreyer, P.A., Roberts, F.S.: Irreversible \(k\)-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math 157(7), 1615–1627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Flocchini, P., Geurts, F., Santoro, N.: Optimal irreversible dynamos in chordal rings. Discrete Appl. Math. 113(1), 23–42 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Flocchini, R., Kralovic, A., Roncato, P., Ruzicka, N.: Santoro on time versus size for monotone dynamic monopolies in regular topologies. J. Discrete Algorithms 1(2), 129–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in tori. Discrete Appl. Math. 137(2), 197–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luccio, F., Pagli, L., Sanossian, H.: Irreversible dynamos in butterflies. In: Proceedings of the 6th International Colloquium on Structural Information and Communication Complexity, pp. 204–218 (1999)

    Google Scholar 

  28. Morris, R.: Minimal percolating sets in bootstrap percolation. Electron. J. Comb. 16(1), 20 (2009). Research Paper 2

    MathSciNet  MATH  Google Scholar 

  29. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput. Sci. 282, 231–257 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wormald, N.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics, pp. 239–298. Cambridge University Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Moisset de Espanés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de Espanés, P.M., Rapaport, I. (2015). Strict Majority Bootstrap Percolation on Augmented Tori and Random Regular Graphs: Experimental Results. In: Isokawa, T., Imai, K., Matsui, N., Peper, F., Umeo, H. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2014. Lecture Notes in Computer Science(), vol 8996. Springer, Cham. https://doi.org/10.1007/978-3-319-18812-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18812-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18811-9

  • Online ISBN: 978-3-319-18812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics