Skip to main content

Trajectories-State: A New Neural Mechanism to Interpretate Cerebral Dynamics

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9107))

Abstract

With regard to neural networks, there are two different areas which have generated two lines of research. One research interest comes from the field of computer science which seeks to create and design neural networks capable of performing computational tasks. In this line of research, any neural network is relevant because the important issue is the problems which they are capable of resolving. Thus, neural networks are computational devices and computational power and the computational process which they perform are researched. The other interest of research is related to neuroscience. This focuses on both neural and brain activity. The big difference between these two lines of research can be observed from the outset. In the first, the neural network is designed and its performance on computational tasks is then researched. In the second, performance on computational tasks is known but the neural mechanism is not and neuroscience seeks to identify it. An interaction between these two lines of research is very positive because it produces synergies which generate important advances in both lines of research e.g. Hopfield’s networks. This article enunciates a neural mechanism to interpret neural dynamics based on some of the results produced by computer science. This mechanism identifies an internal or external state s with a formal language L. Independently, if the mechanism exist or not in the human brain, this mechanism can be used to design new architectures for neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S.-I.: Neural theory of association and concept-formation. Biological Cybernetics 26(3), 175–185 (1977)

    Article  MATH  Google Scholar 

  2. Amit, D.J.: Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press (1992)

    Google Scholar 

  3. Bathellier, B., et al.: Discrete neocortical dynamics predict behavioral categorization of sounds. Neuron 76(2), 435–449 (2012)

    Article  Google Scholar 

  4. Gray, C.M., et al.: Synchronization of oscillatory neuronal responses in cat striate cortex: Temporal properties. Visual Neuroscience 8, 337–347 (1992)

    Article  Google Scholar 

  5. Hirsch, M.W.: Convergent activation dynamics in continuous time networks. Neural Networks 2(5), 331–349 (1989)

    Article  Google Scholar 

  6. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  7. Joliot, M., Ribary, U., Llinás, R.: Human oscillatory brain activity near 40 hz coexists with cognitive temporal binding. Proceedings of the National Academy of Sciences 91(24), 11748–11751 (1994)

    Article  Google Scholar 

  8. Kenet, T., et al.: Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003)

    Article  Google Scholar 

  9. Kohonen, T.: Associative Memory-A System Theoretical Approach. Springer (1978)

    Google Scholar 

  10. Kolen, J.F.: Fool’s gold: Extracting finite state machines from recurrent network dynamics. In: Advances in Neural Information Processing Systems, vol. 6, pp. 501–508. Morgan Kaufmann (1994)

    Google Scholar 

  11. Llinás, R.R., et al.: Gamma-band deficiency and abnormal thalamocortical activity in p/q-type channel mutant mice. Proceedings of the National Academy of Sciences 104(45), 17819–17824 (2007)

    Article  Google Scholar 

  12. Llinás, R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242(4886), 1654–1664 (1988)

    Article  Google Scholar 

  13. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Henry Holt and Co., Inc., New York (1982)

    Google Scholar 

  14. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics (5), 115–133 (1943)

    Google Scholar 

  15. Meyers, E.M., Freedman, D.J., Kreiman, G., Miller, E.K., Poggio, T.: Dynamic population coding of category information in inferior temporal and prefrontal cortex. Journal of Neurophysiology 100(3), 1407–1419 (2008)

    Article  Google Scholar 

  16. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc. (1967)

    Google Scholar 

  17. Mira, J., Delgado, A.E.: Where is knowledge in robotics? some methodological issues on symbolic and connectionist perspectives of AI. In: Zhou, C., Maravall, D., Ruan, D., Kacprzyk, J. (eds.) Autonomous Robotic Systems, pp. 3–34 (2003)

    Google Scholar 

  18. Mira, J., Delgado, A.: Neural modeling in cerebral dynamics. Biosystems 71(1-2), 133–144 (2003)

    Article  Google Scholar 

  19. Mira, J.M., García, A.E.: On how the computational paradigm can help us to model and interpret the neural function. Natural Computing 6(3), 211–240 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Newell, A.: The knowledge level. AI Magazine 2(2), 1–33 (1981)

    MathSciNet  Google Scholar 

  21. Omlin, C.: Understanding and Explaining DRN Behavior. In: Field Guide to Dynamical Recurrent Networks, pp. 207–227. Wiley-IEEE Press (2001)

    Google Scholar 

  22. Pepperberg, I.: Talking with alex: Logic and speech in parrots. Scientific American 9(4), 60–65 (1998)

    Google Scholar 

  23. Polack, C., McConnell, B., Miller, R.: Associative foundation of causal learning in rats. Learning and Behavior 41(1), 25–41 (2013)

    Article  Google Scholar 

  24. Sekar, K., et al.: Cortical response tracking the conscious experience of threshold duration visual stimuli indicates visual perception is all or none. Proceedings of the National Academy of Sciences 110(14), 5642–5647 (2013)

    Article  Google Scholar 

  25. Stosiek, C., et al.: In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences 100(12), 7319–7324 (2003)

    Article  Google Scholar 

  26. Tsuda, I.: Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behavioral and Brain Sciences 24(5), 793–810 (2001)

    Article  Google Scholar 

  27. Tsuda, I.: Hypotheses on the functional roles of chaotic transitory dynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science 19(1), 15113 (2009)

    Article  MathSciNet  Google Scholar 

  28. Zimmerman, H., Neuneier, R.: Neural Network Architectures for the Modeling of Dynamic Systems. In: A Field Guide to Dynamical Recurrent Networks, pp. 311–350. Wiley-IEEE Press (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Miguel-Tomé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Miguel-Tomé, S. (2015). Trajectories-State: A New Neural Mechanism to Interpretate Cerebral Dynamics. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics