Skip to main content

Computable Representation of Antimicrobial Recommendations Using Clinical Rules: A Clinical Information Systems Perspective

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

The overuse of antimicrobials promotes the resistance of antibiotics, which is a great concern in hospitals. Clinical Guidelines are essential documents that provide useful recommendations to clinicians about the therapy. In order to obtain a Computerised Clinical Guideline, main efforts to represent this knowledge focus on ad-hoc data flow models. However, they have had a low impact in the industry since they generally neglect clinical standards or they are hard to maintain due to the model complexity. In this work, we propose to step backward to use rule-based approaches to obtain clinical rules, more simple to model and easier to manage. We also review and discuss main rule representation alternatives and we present a case study in the Ventilator Associated Pneumonia from a Clinical Guideline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adlassnig, K.P., Blacky, A., Koller, W.: Artificial-intelligence-based hospital-acquired infection control. Stud. Health Technol. Inform. 149, 103–110 (2009)

    Google Scholar 

  2. Boussadi, A., Bousquet, C., Sabatier, B., Caruba, T., Durieux, P., Degoulet, P.: A business rules design framework for a pharmaceutical validation and alert system. Methods Inf. Med. (1), 36–50 (2011)

    Google Scholar 

  3. Centers for Disease Control and Prevention. CDC NHSN patient safety component (2013)

    Google Scholar 

  4. Clayton, P.D., Pryor, T.A., Wigertz, O.B., Hripcsak, G.: Issues and structures for sharing knowledge among decision-making. approaches for creating computer-interpretable guidelines that facilitate decision support 25 systems: The 1989 arden homestead retreat. In: Proc. 13th Symp. on Computer Applications in Medical Care, pp. 116–121 (1989)

    Google Scholar 

  5. Cosgrove, S.E., Avdic, E.: John hopkins antibiotics guidelines 2013-2014: Treatment recommendations for adult inpatients (2013)

    Google Scholar 

  6. de Clercq, P.A., Blom, J.A., Korsten, H.H.M., Hasman, A.: Methodological review: Approaches for creating computer-interpretable guidelines that facilitate decision support. Artificial Intelligence in Medicine 31(1), 1–27 (2004)

    Article  Google Scholar 

  7. Hill, E.F.: Jess in Action: Java Rule-Based Systems. Manning Publications Co. (2003)

    Google Scholar 

  8. Van Hille, P., Jacques, J., Taillard, J., Rosier, A., Delerue, D., Burgun, A., Dameron, O.: Comparing drools and ontology reasoning approaches for telecardiology decision support. In: Quality of Life through Quality of Information Proceedings of MIE 2012, The XXIVth International Congress of the European Federation for Medical Informatics, Pisa, Italy, August 26-29, pp. 300–304 (2012)

    Google Scholar 

  9. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A semantic web rule language combining OWL and RuleML. W3C Member Submission (May 21, 2004), http://www.w3.org/Submission/SWRL

  10. Jung, C.Y., Sward, K.A., Haug, P.J.: Executing medical logic modules expressed in ardenml using drools. JAMIA 19(4), 533–536 (2012)

    Google Scholar 

  11. Kifer, M.: Rule interchange format: The framework. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 1–11. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Landers, T., Apte, M., Hyman, S., Furuya, Y., Glied, S., Larson, E.: A comparison of methods to detect urinary tract infections using electronic data. Jt. Comm. J. Qual. Patient Saf. (9), 411–417 (2010)

    Google Scholar 

  13. Leibovici, L., Paul, M., Nielsen, A.D., Tacconelli, E., Andreassen, S.: The treat project: decision support and prediction using causal probabilistic networks. Int. J. Antimicrob. Agents 30, 93–102 (2007)

    Article  Google Scholar 

  14. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. J. Web Sem. 3(1), 41–60 (2005)

    Article  Google Scholar 

  15. O’Connor, M.F., Knublauch, H., Tu, S., Grosof, B.N., Dean, M., Grosso, W., Musen, M.A.: Supporting rule system interoperability on the semantic web with SWRL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 974–986. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Peleg, M.: Computer-interpretable clinical guidelines: A methodological review. Journal of Biomedical Informatics 46(4), 744–763 (2013)

    Article  Google Scholar 

  17. Proctor, M.: Drools: A rule engine for complex event processing. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 2–2. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical report, W3C (January 2008)

    Google Scholar 

  19. Richards, M.J., Edwards, J.R., Culver, D.H., Gaynes, R.P.: Nosocomial infections in medical intensive care units in the united states. national nosocomial infections surveillance system. Crit. Care. Med. 27(5), 887–892 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Iglesias, N., Juarez, J.M., Campos, M., Palacios, F. (2015). Computable Representation of Antimicrobial Recommendations Using Clinical Rules: A Clinical Information Systems Perspective. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics