Abstract
This paper describes an application of variational image registration. The method is based on an efficient implementation of the diffusion registration formulated in the frequency domain. The goal is to register anatomical and functional brain images of the same patient to facilitate the process of functional localization. This non-rigid image registration of different modalities makes possible to obtain a geometric correspondence which allows for localizing the functional processes that occur in the brain. In order to evaluate the performance of the proposed method, visual and numeric results of registration are shown. The quality of the registration results is measured by considering the peak signal to noise ratio (PSNR), the mutual information (MI) and the correlation ratio (CR).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Besl, P.J., McKay, N.D.: A method for registration of 3 D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Sotiras, A., Davatzikos, C., Paragios, N.: Deformable Medical Image Registration: A Survey. IEEE Transactions on Medical Imaging 32(7), 1153–1190 (2013)
Zitová, B., Flusser, J.: Imagen registration methods: A survey. Image and Vision Computing 21 (2003)
Gholipour, A., Kehtarnavaz, N., Briggs, R., Devous, M., Gopinath, K.: Brain Functional Localization: A Survey of Image Registration Techniques. IEEE Trans. Image Processing 26, 427–451 (2007)
Murphy, K., et al.: Evaluation of registration methods on thoracic CT: The EMPIRE10 challenge. IEEE Trans. Medical Imaging 30(11), 1901–1920 (2011)
Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Medical Imaging 28, 1251–1265 (2009)
Klein, S., et al.: Elastix: A toolbox for intensity-based medical image registration. IEEE Trans. Medical Imaging 29(1), 196–205 (2010)
Ibáñez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide. Kitware, Clifton Park (2005)
Rueckert, D., et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18, 712–721 (1999)
Davis, M.H., et al.: A physics-based coordinate transformation for 3D image matching. IEEE Trans. Medical Imaging 16(3), 317–328 (1997)
Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra & its Applications 308 (2004)
Larrey-Ruiz, J., Verdú-Monedero, R., Morales-Sánchez, J.: A Fourier domain framework for variational image registration. J. Math. Imaging Vis. 32(1), 57–72 (2008)
Verdú-Monedero, R., Larrey-Ruiz, J., Morales-Sánchez, J.: Frequency implementation of the Euler-Lagrange equations for variational image registration. IEEE Signal Processing Letters 15, 321–324 (2008)
Roche, A., Malandain, G., Pennec, X., Ayache, N.: The correlation ratio as a new similarity measure for multimodal image registration. In: Wells, W.M., Colchester, A., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1115–1124. Springer, Heidelberg (1998)
Fischer, B., Modersitzki, J.: Flirt: A flexible image registration toolbox. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 261–270. Springer, Heidelberg (2003)
Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, USA (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Legaz-Aparicio, ÁG., Verdú-Monedero, R., Larrey-Ruiz, J., López-Mir, F., Naranjo, V., Bernabéu, Á. (2015). Multimodal 3D Registration of Anatomic (MRI) and Functional (fMRI and PET) Intra-patient Images of the Brain. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-18914-7_36
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18913-0
Online ISBN: 978-3-319-18914-7
eBook Packages: Computer ScienceComputer Science (R0)