Skip to main content

Abstract

This paper presents a practical application of Sample Selection techniques to model the process of selecting the next system response of a conversational agent. Our proposal deals with the important problem of imbalanced training data that is usually present in the selected application domain. This process is modeled as a classification task that takes the dialog history as input, and selects the next system response as output. Our proposal improves the classifier’s performance by automatically selecting examples that are difficult to classify during the training phase, considering the criteria of proximity to the border and the typicality of the examples. We present a practical application of this technique for a conversational agent providing railway information. Simulation results support the usefulness of the proposed approach to provide the better selection of the responses of the conversational agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denker, J., Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel, L.: Large automatic learning, rule extraction, and generalization. Complex Syst. 1, 877–922 (1987)

    MATH  MathSciNet  Google Scholar 

  2. Huyser, K., Hororwitz, A.: Generalization in connectionist networks that realize boolean functions. In: Connectionist Models Summer School, pp. 191–200 (1988)

    Google Scholar 

  3. Munro, P.: Repeat until bored: a pattern selection strategy. Adv. Neural Inf. Proc. Syst. 4, 1001–1008 (1992)

    Google Scholar 

  4. Ohnishi, N., Okamoto, A., Sugi, N.: Selective presentation of learning samples for efficient learning in multilayer perceptron. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 1, pp. 688–690 (1991)

    Google Scholar 

  5. Zhang, B.T.: Accelerated learning by active example selection. Int. J. Neural Netw. 5(1), 67–75 (1994)

    Article  Google Scholar 

  6. Zhang, B.T.: An incremental learning algorithm that optimizes network size and sample size in one trial. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 215–220 (1994)

    Google Scholar 

  7. Zhang, B.T., Veenker, G.: Neural networks that teach themselves through genetic discovery of novel examples. In: Proceedings of the International Joint Conference on Neural Networks, vol. 1, pp. 690–685 (1991)

    Google Scholar 

  8. Chairi, I., Alaoui, S., Lyhyaoui, A.: Intrusion detection based sample selection for imbalanced data distribution. In: IEEE Xplore. Second International Conference on Innovative Computing Technology, pp. 259–264 (2012)

    Google Scholar 

  9. Chairi, I., Alaoui, S., Lyhyaoui, A.: Learning from imbalanced data using methods of sample selection. In: IEEE Explore. International Conference on Multimedia Computing and Systems, pp. 254–257 (2012)

    Google Scholar 

  10. Chaïri, I., Alaoui, S., Lyhyaoui, A.: Balancing distribution of intrusion detection data using sample selection. J. Inf. Secur. Res. 3, 153–163 (2012)

    Google Scholar 

  11. Pieraccini, R.: The Voice in the Machine: Building Computers that Understand Speech. The MIT Press, Cambridge (2012)

    Google Scholar 

  12. Chawla, N.V., Japkowicz, N., Kolcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. 6(1), 1–6 (2004)

    Article  Google Scholar 

  13. Williams, D., Myers, V., Silvious, M.: Mine classification with imbalanced data. IEEE Geosci. Remote Sens. Lett. 3(6), 528–532 (2009)

    Article  Google Scholar 

  14. El Jelali, S., Lyhyaoui, A., Anibal, R., Figueiras, V.: An emphasized target smoothing procedure to improve MLP classifiers performance. In: European symposium on artificial Neural Networks (2008)

    Google Scholar 

  15. Lyhyaoui, A., Martinez, M., Mora, I., Vázquez, M., Sancho, J.L., Figueiras-Vidal, A.R.: Sample selection via clustering to construct support vector-like classifiers. IEEE Trans. Neural Netw. 10, 1474–1481 (1999)

    Article  Google Scholar 

  16. Lyhyaoui, Tesis doctoral: Classificadores RBF via técnicas de agrupamiento y selecton de muestras. Universidad Carlos III de Madrid, Madrid (1999)

    Google Scholar 

  17. Ahalt, S., Stanley, C., Krishnamurthy, K., Chen, P., Douglas, M.E.: Competitive learning algorithms for vector quantization. Neural Netw. 3, 277–290 (1990)

    Article  Google Scholar 

  18. Kohonen, T.: The self-organizing map. Proc. IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  19. Sklansky, J., Michelotti, L.: Locally trained piecewise linear classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 2, 101–111 (1980)

    Article  MATH  Google Scholar 

  20. Yuhua, L., Maguire, L.: Selecting critical patterns based on local geometrical and statistical information. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1189–1201 (2011)

    Article  Google Scholar 

  21. Griol, D., Hurtado, L., Segarra, E., Sanchis, E.: A statistical approach to spoken dialog systems design and evaluation. Speech Commun. 50(8–9), 666–682 (2008)

    Article  Google Scholar 

  22. Minsky, M.: A framework for representing knowledge. In: Winston, P. (ed.) The Psychology of Computer Vision, pp. 211–277. McGraw-Hill, New York (1975)

    Google Scholar 

  23. David, G., Zoraida, C., Ramón, L.-C., Giuseppe, R.: A domain independent statistical methodology for dialog management in spoken dialog systems. Comput. Speech Lang. 28(3), 743–768 (2014)

    Article  Google Scholar 

  24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) PDP: Computational Models of Cognition and Perception, pp. 319–362. MIT Press, Cambridge (1986)

    Google Scholar 

  25. Zhang, T., Mühlenbein, H.: Genetic programming of minimal neural nets using Occam’s razor. In: Proceedings of the International Conference Genetic Algorithms, pp. 342–349 (1993)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by Projects MINECO TEC2012-37832-C02-01, CICYT TEC2011-28626-C02-02, and CAM CONTEXTS (S2009/TIC-1485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Griol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chairi, I., Griol, D., Molina, J.M. (2015). Modeling Human-Machine Interaction by Means of a Sample Selection Method. In: Bajo, J., et al. Highlights of Practical Applications of Agents, Multi-Agent Systems, and Sustainability - The PAAMS Collection. PAAMS 2015. Communications in Computer and Information Science, vol 524. Springer, Cham. https://doi.org/10.1007/978-3-319-19033-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19033-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19032-7

  • Online ISBN: 978-3-319-19033-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics