Skip to main content

Deriving Protein Backbone Using Traces Extracted from Density Maps at Medium Resolutions

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9096))

Included in the following conference series:

Abstract

Electron cryomicroscopy is an experimental technique that is capable to produce three dimensional gray-scale images for protein molecules, called density maps. At medium resolution, the atomic details of the molecule cannot be visualized from density maps. However, some features of the molecule can be seen such as the locations of major secondary structures and the skeleton of the molecule. In addition, the order and direction of the detected secondary structure traces can be inferred. We introduce a method to construct the entire model of a protein directly for traces extracted from the density map. The initial results show that this method has good potential. A single model was built for each of the 12 proteins used in the test. The RMSD100 of the models is slightly improved from our previous method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ludtke, S.J., Song, C.D.: Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy. Structure 12, 1129–1136 (2004)

    Article  Google Scholar 

  2. Zhou, Z.H., Dougherty, M., Jakana, J., He, J., Rixon, F.J., Chiu, W.: Seeing the herpesvirus capsid at 8.5 A. Science 288, 877–880 (2000)

    Article  Google Scholar 

  3. Chiu, W., Schmid, M.F.: Pushing back the limits of electron cryomicroscopy. Nature Structural Biology 4, 331–333 (1997)

    Article  Google Scholar 

  4. Chiu, W., Baker, M.L., Jiang, W., Zhou, Z.H.: Deriving folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches. Current Opinion in Structural Biology 12, 263–269 (2002)

    Article  Google Scholar 

  5. Zhang, X., Jin, L., Fang, Q., Hui, W.H., Zhou, Z.H.: 3.3 Å Cryo-EM Structure of a Nonenveloped Virus Reveals a Priming Mechanism for Cell Entry. Cell 141, 472–482 (2010)

    Article  Google Scholar 

  6. Cheng, L., Sun, J., Zhang, K., Mou, Z., Huang, X., Ji, G., Sun, F., Zhang, J., Zhu, P.: Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping. Proceedings of the National Academy of Sciences 108, 1373–1378 (2011)

    Article  Google Scholar 

  7. Gonen, T., Sliz, P., Kistler, J., Cheng, Y., Walz, T.: Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193–197 (2004)

    Article  Google Scholar 

  8. Brown, A., Amunts, A., Bai, X.-C., Sugimoto, Y., Edwards, P.C., Murshudov, G., Scheres, S.H.W., Ramakrishnan, V.: Structure of the large ribosomal subunit from human mitochondria. Science 346, 718–722 (2014)

    Article  Google Scholar 

  9. Hussain, T., Llácer, J.L., Fernández, I.S., Munoz, A., Martin-Marcos, P., Savva, C.G., Lorsch, J.R., Hinnebusch, A.G., Ramakrishnan, V.: Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex. Cell 159, 597–607 (2014)

    Article  Google Scholar 

  10. Topf, M., Lasker, K., Webb, B., Wolfson, H., Chiu, W., Sali, A.: Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008)

    Article  Google Scholar 

  11. DiMaio, F., Tyka, M.D., Baker, M.L., Chiu, W., Baker, D.: Refinement of protein structures into low-resolution density maps using rosetta. Journal of Molecular Biology 392, 181–190 (2009)

    Article  Google Scholar 

  12. Topf, M., Baker, M.L., Marti-Renom, M.A., Chiu, W., Sali, A.: Refinement of protein structures by iterative comparative modeling and CryoEM density fitting. Journal of Molecular Biology 357, 1655–1668 (2006)

    Article  Google Scholar 

  13. Pintilie, G.D., Zhang, J., Goddard, T.D., Chiu, W., Gossard, D.C.: Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. Journal of Structural Biology 170, 427–438 (2010)

    Article  Google Scholar 

  14. Kovacs, J.A., Chacón, P., Cong, Y., Metwally, E., Wriggers, W.: Fast rotational matching of rigid bodies by fast Fourier transform acceleration of five degrees of freedom. Acta Crystallographica. Section D, Biological Crystallography 59, 1371–1376 (2003)

    Article  Google Scholar 

  15. Wriggers, W., Chacón, P.: Modeling tricks and fitting techniques for multiresolution structures. Structure 9, 779–788 (2001)

    Article  Google Scholar 

  16. Tama, F., Miyashita, O., Brooks Iii, C.L.: Flexible Multi-scale Fitting of Atomic Structures into Low-resolution Electron Density Maps with Elastic Network Normal Mode Analysis. Journal of Molecular Biology 337, 985–999 (2004)

    Article  Google Scholar 

  17. Suhre, K., Navazab, J., Sanejouand, Y.-H.: NORMA: a tool for flexible fitting of high-resolution protein structures into low-resolution electron-microscopy-derived density maps. Acta Crystallographica. Section D, Biological Crystallography 62, 1098–1100 (2006)

    Article  Google Scholar 

  18. Ming, D., Kong, Y., Wakil, S.J., Brink, J., Ma, J.: Domain movements in human fatty acid synthase by quantized elastic deformational model. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 99, 7835–7899 (2002)

    Google Scholar 

  19. Baker, M.L., Abeysinghe, S.S., Schuh, S., Coleman, R.A., Abrams, A., Marsh, M.P., Hryc, C.F., Ruths, T., Chiu, W., Ju, T.: Modeling protein structure at near atomic resolutions with Gorgon. Journal of Structural Biology 174, 360–373 (2011)

    Article  Google Scholar 

  20. Lindert, S., Staritzbichler, R., Wötzel, N., Karakaş, M., Stewart, P.L., Meiler, J.: EM-Fold: De Novo Folding of α-Helical Proteins Guided by Intermediate-Resolution Electron Microscopy Density Maps. Structure 17, 990–1003 (2009)

    Article  Google Scholar 

  21. Lindert, S., Alexander, N., Wötzel, N., Karaka, M., Stewart, P.L., Meiler, J.: EM-Fold: De Novo Atomic-Detail Protein Structure Determination from Medium-Resolution Density Maps. Structure 20, 464–478 (2012)

    Article  Google Scholar 

  22. Al Nasr, K., Chen, L., Si, D., Ranjan, D., Zubair, M., He, J.: Building the initial chain of the proteins through de novo modeling of the cryo-electron microscopy volume data at the medium resolutions. In: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, pp. 490–497. ACM, Orlando (2012)

    Google Scholar 

  23. Al Nasr, K., Ranjan, D., Zubair, M., Chen, L., He, J.: Solving the Secondary Structure Matching Problem in Cryo-EM De Novo Modeling Using a Constrained K-Shortest Path Graph Algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics 11, 419–430 (2014)

    Article  Google Scholar 

  24. Al Nasr, K., Sun, W., He, J.: Structure prediction for the helical skeletons detected from the low resolution protein density map. BMC Bioinformatics 11, S44 (2010)

    Google Scholar 

  25. Jiang, W., Baker, M.L., Ludtke, S.J., Chiu, W.: Bridging the information gap: computational tools for intermediate resolution structure interpretation. Journal of Molecular Biology 308, 1033–1044 (2001)

    Article  Google Scholar 

  26. Del Palu, A., He, J., Pontelli, E., Lu, Y.: Identification of Alpha-Helices from Low Resolution Protein Density Maps. In: Proceeding of Computational Systems Bioinformatics Conference(CSB), pp. 89–98 (2006)

    Google Scholar 

  27. Baker, M.L., Ju, T., Chiu, W.: Identification of secondary structure elements in intermediate-resolution density maps. Structure 15, 7–19 (2007)

    Article  Google Scholar 

  28. Rusu, M., Wriggers, W.: Evolutionary bidirectional expansion for the tracing of alpha helices in cryo-electron microscopy reconstructions. Journal of Structural Biology 177, 410–419 (2012)

    Article  Google Scholar 

  29. Kong, Y., Zhang, X., Baker, T.S., Ma, J.: A Structural-informatics approach for tracing beta-sheets: building pseudo-C(alpha) traces for beta-strands in intermediate-resolution density maps. Journal of Molecular Biology 339, 117–130 (2004)

    Article  Google Scholar 

  30. Si, D., Ji, S., Al Nasr, K., He, J.: A machine learning approach for the identification of protein secondary structure elements from cryoEM density maps. Biopolymers 97, 698–708 (2012)

    Article  Google Scholar 

  31. Si, D., He, J.: Tracing Beta Strands Using StrandTwister from Cryo-EM Density Maps at Medium Resolutions. Structure 22, 1665–1676 (2014)

    Article  Google Scholar 

  32. Kong, Y., Ma, J.: A structural-informatics approach for mining beta-sheets: locating sheets in intermediate-resolution density maps. Journal of Molecular Biology 332, 399–413 (2003)

    Article  Google Scholar 

  33. Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. Computer-Aided Design 39, 352–360 (2007)

    Article  Google Scholar 

  34. Abeysinghe, S.S., Ju, T.: Interactive skeletonization of intensity volumes. Vis. Comput. 25, 627–635 (2009)

    Article  Google Scholar 

  35. Abeysinghe, S.S., Baker, M., Wah, C., Tao, J.: Segmentation-free skeletonization of grayscale volumes for shape understanding. In: IEEE International Conference on Shape Modeling and Applications, SMI, pp. 63–71. Stony Brook, NY (2008)

    Google Scholar 

  36. Al Nasr, K., Liu, C., Rwebangira, M., Burge, L., He, J.: Intensity-Based Skeletonization of CryoEM Gray-Scale Images Using a True Segmentation-Free Algorithm. IEEE/ACM Trans. Comput. Biol. Bioinformatics 10, 1289–1298 (2013)

    Article  Google Scholar 

  37. Abeysinghe, S., Ju, T., Baker, M.L., Chiu, W.: Shape modeling and matching in identifying 3D protein structures. Computer-Aided Design 40, 708–720 (2008)

    Article  Google Scholar 

  38. Al Nasr, K., Ranjan, D., Zubair, M., He, J.: Ranking Valid Topologies of the Secondary Structure elements Using a constraint Graph. Journal of Bioinformatics and Computational Biology 9, 415–430 (2011)

    Article  Google Scholar 

  39. Biswas, A., Si, D., Al Nasr, K., Ranjan, D., Zubair, M., He, J.: A Constraint Dynamic Graph Approach to Identify the Secondary Structure Topology from cryoEM Density Data in Presence of Errors. In: Proceedings of the 2011 IEEE International Conference on Bioinformatics and Biomedicine, pp. 160–163. IEEE Computer Society (2011)

    Google Scholar 

  40. Baker, M.R., Rees, I., Ludtke, S.J., Chiu, W., Baker, M.L.: Constructing and Validating Initial Cα Models from Subnanometer Resolution Density Maps with Pathwalking. Structure 20, 450–463 (2012)

    Article  Google Scholar 

  41. Al Nasr, K., He, J.: An effective convergence independent loop closure method using Forward-Backward Cyclic Coordinate Descent. International Journal of Data Mining and Bioinformatics 3, 346–361 (2009)

    Article  Google Scholar 

  42. Canutescu, A.A., Dunbrack, R.L.J.: Cyclic coordinate descent: A robotics algorithm for protein loop closure. Protein Science 12, 963–972 (2003)

    Article  Google Scholar 

  43. Boomsma, W., Hamelryck, T.: Full cyclic coordinate descent: Solving the protein loop closure problem in Cα space. BMC Bioinformatics 6, 159 (2005)

    Article  Google Scholar 

  44. Schuette, J.-C., Murphy, F.V., Kelley, A.C., Weir, J.R., Giesebrecht, J., Connell, S.R., Loerke, J., Mielke, T., Zhang, W., Penczek, P.A., Ramakrishnan, V., Spahn, C.M.T.: GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J. 28, 755–765 (2009)

    Article  Google Scholar 

  45. Ludtke, S.J., Baldwin, P.R., Chiu, W.: EMAN: Semi-automated software for high resolution single particle reconstructions. Journal of Structural Biology 128, 82–97 (1999)

    Article  Google Scholar 

  46. Lawson, C.L., Baker, M.L., Best, C., Bi, C., Dougherty, M., Feng, P., van Ginkel, G., Devkota, B., Lagerstedt, I., Ludtke, S.J., Newman, R.H., Oldfield, T.J., Rees, I., Sahni, G., Sala, R., Velankar, S., Warren, J., Westbrook, J.D., Henrick, K., Kleywegt, G.J., Berman, H.M., Chiu, W.: EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Research 39, D456–D464 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Al Nasr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nasr, K.A., He, J. (2015). Deriving Protein Backbone Using Traces Extracted from Density Maps at Medium Resolutions. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19048-8_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19047-1

  • Online ISBN: 978-3-319-19048-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics