Abstract
Supervised classifiers are highly dependent on abundant labeled training data. Alternatives for addressing the lack of labeled data include: labeling data (but this is costly and time consuming); training classifiers with abundant data from another domain (however, the classification accuracy usually decreases as the distance between domains increases); or complementing the limited labeled data with abundant unlabeled data from the same domain and learning semi-supervised classifiers (but the unlabeled data can mislead the classifier). A better alternative is to use both the abundant labeled data from a source domain and the limited labeled data from the target domain to train classifiers in a domain adaptation setting. We propose such a classifier, based on logistic regression, and evaluate it for the task of splice site prediction – a difficult and essential step in gene prediction. Our classifier achieved high accuracy, with highest areas under the precision-recall curve between 50.83% and 82.61%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arita, M., Tsuda, K., Asai, K.: Modeling splicing sites with pairwise correlations. Bioinformatics 18(suppl 2), S27–S34 (2002)
Baten, A.K.M.A., Halgamuge, S.K., Chang, B., Wickramarachchi, N.: Biological Sequence Data Preprocessing for Classification: A Case Study in Splice Site Identification. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007, Part II. LNCS, vol. 4492, pp. 1221–1230. Springer, Heidelberg (2007)
Baten, A.K.M.A., Chang, B.C.H., Halgamuge, S.K., Li, J.: Splice site identification using probabilistic parameters and svm classification. BMC Bioinformatics 7(suppl 5), S15 (2006)
Bernal, A., Crammer, K., Hatzigeorgiou, A., Pereira, F.: Global Discriminative Learning for Higher-Accuracy Computational Gene Prediction. PLoS Comput. Biol. 3(3), e54 (2007)
Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C., Furey Jr., T.S., Ares, M., Haussler, D.: Knowledge-based Analysis of Microarray Gene Expression Data Using Support Vector Machines. PNAS 97(1), 262–267 (2000)
Cai, D., Delcher, A., Kao, B., Kasif, S.: Modeling splice sites with Bayes networks. Bioinformatics 16(2), 152–158 (2000)
Catal, C., Diri, B.: Unlabelled extra data do not always mean extra performance for semi-supervised fault prediction. Expert Systems 26(5), 458–471 (2009); Wiley Online Library
Chelba, C., Acero, A.: Adaptation of maximum entropy capitalizer: Little data can help a lot. Computer Speech & Language 20(4), 382–399 (2006)
Dai, W., Xue, G.R., Yang, Q., Yu, Y.: Transferring Naïve Bayes Classifiers for Text Classification. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (2007)
Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: Proceedings of the Twenty Third International Conference on Machine Learning, pp. 233–240. ACM (2006)
Gross, S.S., Do, C.B., Sirota, M., Batzoglou, S.: Contrast: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction. Genome Biology 8(12), R269 (2007)
Giannoulis, G., Krithara, A., Karatsalos, C., Paliouras, G.: Splice site recognition using transfer learning. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS (LNAI), vol. 8445, pp. 341–353. Springer, Heidelberg (2014)
Herndon, N., Caragea, D.: Empirical Study of Domain Adaptation with Naïve Bayes on the Task of Splice Site Prediction. In: Proceedings of the 5th International Conference on Bioinformatics Models, Methods and Algorithms, pp. 57–67 (2014)
Herndon, N., Caragea, D.: Predicting Protein Localization Using a Domain Adaptation Approach. In: FernÁndez Chimeno, M., Fernandes, P.L., Alvarez, S., Stacey, D., Solé-Casals, J., Fred, A., Gamboa, H. (eds.) BIOSTEC 2013. CCIS, vol. 452, pp. 191–206. Springer, Heidelberg (2014)
Hubbard, T.J., Park, J.: Fold recognition and ab initio structure predictions using hidden markov models and β-strand pair potentials. Proteins: Structure, Function, and Bioinformatics 23(3), 398–402 (1995)
Korf, I., Flicek, P., Duan, D., Brent, M.R.: Integrating genomic homology into gene structure prediction. Bioinformatics 17(suppl. 1), S140–S148 (2001)
Le Cessie, S., Van Houwelingen, J.C.: Ridge estimators in logistic regression. Applied Statistics, 191–201 (1992)
Li, J.L., Wang, L.F., Wang, H.Y., Bai, L.Y., Yuan, Z.M.: High-accuracy splice site prediction based on sequence component and position features. Genet. Mol. Res. 11(3), 3432–3451 (2012)
Müller, K.-R., Mika, S., Rätsch, G., Tsuda, S., Schölkopf, B.: An Introduction to Kernel-Based learning Algorithms. IEEE Transactions on Neural Networks 12(2), 181–202 (2001)
Noble, W.S.: What is a support vector machine? Nat. Biotech. 24(12), 1565–1567 (2006)
Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K.-R., Sommer, R., Schölkopf, B.: Improving the C. elegans genome annotation using machine learning. PLoS Computational Biology 3, e20 (2007)
Schweikert, G., Widmer, C., Schölkopf, B., Rätsch, G.: An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis. In: NIPS 2008, pp. 1433–1440 (2008)
Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.: Accurate Splice site Prediction Using Support Vector Machines. BMC Bioinformatics 8(suppl.10), 1–16 (2007)
Stanescu, A., Caragea, D.: Ensemble-based semi-supervised learning approaches for imbalanced splice site datasets. In: Proceedings of the 6th IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2014, pp. 432–437 (2014)
Stanescu, A., Caragea, D.: Semi-supervised self-training approaches for imbalanced splice site datasets. In: Proceedings of the 6th International Conference on Bioinformatics and Computational Biology, BICoB 2014, pp. 131–136 (2014)
Stanke, M., Waack, S.: Gene prediction with a hidden markov model and a new intron submodel. Bioinformatics 19(suppl 2), ii215–ii225 (2003)
Steijger, T., Abril, J.F., Engström, P.G., Kokocinski, F., Hubbard, T.J., Guigó, R., Harrow, J., Bertone, P., RGASP Consortium, et al.: Assessment of transcript reconstruction methods for rna-seq. Nature Methods 10(12), 1177–1184 (2013)
Tan, S., Cheng, X., Wang, Y., Xu, H.: Adapting Naïve Bayes to Domain Adaptation for Sentiment Analysis. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 337–349. Springer, Heidelberg (2009)
Zhang, Y., Chu, C.H., Chen, Y., Zha, H., Ji, X.: Splice site prediction using support vector machines with a Bayes kernel. Expert Syst. Appl. 30(1), 73–81 (2006)
Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.-R.: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16(9), 799–807 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Herndon, N., Caragea, D. (2015). Domain Adaptation with Logistic Regression for the Task of Splice Site Prediction. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-19048-8_11
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19047-1
Online ISBN: 978-3-319-19048-8
eBook Packages: Computer ScienceComputer Science (R0)