Skip to main content

Multiobjective Optimization for the Stochastic Physical Search Problem

  • Conference paper
  • First Online:
Current Approaches in Applied Artificial Intelligence (IEA/AIE 2015)

Abstract

We model an intelligence collection activity as multiobjective optimization on a binary stochastic physical search problem, providing formal definitions of the problem space and nondominated solution sets. We present the Iterative Domination Solver as an approximate method for generating solution sets that can be used by a human decision maker to meet the goals of a mission. We show that our approximate algorithm performs well across a range of uncertainty parameters, with orders of magnitude less execution time than existing solutions on randomly generated instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Karakostas, G.: A 2+ \(\varepsilon \) approximation algorithm for the k-mst problem. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 754–759. Society for Industrial and Applied Mathematics (2000)

    Google Scholar 

  2. Brown, D.S., Hudack, J., Banerjee, B.: Algorithms for stochastic physical search on general graphs. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  3. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys. Acta informatica 4(1), 1–9 (1974)

    Article  MATH  Google Scholar 

  4. Gutin, G., Punnen, A.P.: The traveling salesman problem and its variations, vol. 12. Springer (2002)

    Google Scholar 

  5. Hazon, N., Aumann, Y., Kraus, S., Sarne, D.: Physical search problems with probabilistic knowledge. Artificial Intelligence 196, 26–52 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jozefowiez, N., Glover, F., Laguna, M.: Multi-objective Meta-heuristics for the Traveling Salesman Problem with Profits. Journal of Mathematical Modelling and Algorithms 7(2), 177–195 (2008). http://link.springer.com/10.1007/s10852-008-9080-2

    Article  MATH  MathSciNet  Google Scholar 

  7. Kambhampati, S.: Model-lite planning for the web age masses: the challenges of planning with incomplete and evolving domain models. In: Proceedings of the National Conference on Artificial Intelligence, pp. 1601–1604 (2007)

    Google Scholar 

  8. Kang, S., Ouyang, Y.: The traveling purchaser problem with stochastic prices: Exact and approximate algorithms. European Journal of Operational Research 209(3), 265–272 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Nguyen, T.A., Do, M., Gerevini, A.E., Serina, I., Srivastava, B., Kambhampati, S.: Generating diverse plans to handle unknown and partially known user preferences. Artificial Intelligence 190, 1–31 (2012)

    Article  MathSciNet  Google Scholar 

  10. Roberts, B., Kroese, D.P.: Estimating the Number of s - t Paths in a Graph. Journal of Graph Algorithms and Applications 11(1), 195–214 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized traveling salesman problem. European Journal of Operational Research 174(1), 38–53 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering problem. Computers & Operations Research 32(6), 1379–1407 (2005)

    Article  Google Scholar 

  13. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization : Methods and Applications (30)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Hudack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hudack, J., Gemelli, N., Brown, D., Loscalzo, S., Oh, J.C. (2015). Multiobjective Optimization for the Stochastic Physical Search Problem. In: Ali, M., Kwon, Y., Lee, CH., Kim, J., Kim, Y. (eds) Current Approaches in Applied Artificial Intelligence. IEA/AIE 2015. Lecture Notes in Computer Science(), vol 9101. Springer, Cham. https://doi.org/10.1007/978-3-319-19066-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19066-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19065-5

  • Online ISBN: 978-3-319-19066-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics