Skip to main content

Efficient Classification of Binary Data Stream with Concept Drifting Using Conjunction Rule Based Boolean Classifier

  • Conference paper
  • First Online:
Current Approaches in Applied Artificial Intelligence (IEA/AIE 2015)

Abstract

We propose a conjunction rule based classification technique that has good classification performance, is simple, automatically identifies important attributes, and is extremely fast. Due to these properties the classifier is most suitable for “big”/streaming data. Empirical study, using multiple datasets, shows that time complexity, compared with other classifiers, is faster by several factors, especially for large number of attributes without sacrificing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 1–16. ACM (2002)

    Google Scholar 

  2. Bache, K., Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  3. Breiman, L.: Bagging predictors. Machine learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM (2007)

    Google Scholar 

  5. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  6. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80. ACM (2000)

    Google Scholar 

  7. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of eugenics 7(2), 179–188 (1936)

    Article  Google Scholar 

  8. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine learning 29(2–3), 131–163 (1997)

    Article  MATH  Google Scholar 

  9. Guyon, I.: Design of experiments of the nips 2003 variable selection benchmark. In: NIPS 2003 Workshop on Feature Extraction and Feature Selection (2003)

    Google Scholar 

  10. Jaccard, P.: The distribution of the flora in the alpine zone.1. New Phytologist 11(2), 37–50 (1912)

    Article  Google Scholar 

  11. Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In: KDD, pp. 202–207 (1996)

    Google Scholar 

  12. Law, Y.-N., Zaniolo, C.: An adaptive nearest neighbor classification algorithm for data streams. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 108–120. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Murthy, S.K.: Automatic construction of decision trees from data: A multi-disciplinary survey. Data mining and knowledge discovery 2(4), 345–389 (1998)

    Article  Google Scholar 

  14. Ñanculef, R., Flaounas, I., Cristianini, N.: Efficient classification of multi-labeled text streams by clashing. Expert Systems with Applications 41(11), 5431–5450 (2014)

    Article  Google Scholar 

  15. Omran, M., Salman, A., Engelbrecht, A.P.: Image classification using particle swarm optimization. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, vol. 1, pp. 18–22, Singapore (2002)

    Google Scholar 

  16. Pang, S., Ozawa, S., Kasabov, N.: Incremental linear discriminant analysis for classification of data streams. Trans. Sys. Man Cyber. Part B 35(5), 905–914 (2005)

    Article  Google Scholar 

  17. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  18. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural processing letters 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  19. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–235. ACM (2003)

    Google Scholar 

  20. Wang, S.-C.: Artificial neural network. In: Interdisciplinary Computing in Java Programming, pp. 81–100. Springer, Heidelberg (2003)

    Google Scholar 

  21. Wolberg, W.H., Mangasarian, O.L.: Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the national academy of sciences 87(23), 9193–9196 (1990)

    Article  MATH  Google Scholar 

  22. Wu, X., Kumar, V.: The top ten algorithms in data mining. CRC Press (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiou Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xiao, Y., Mehrotra, K.G., Mohan, C.K. (2015). Efficient Classification of Binary Data Stream with Concept Drifting Using Conjunction Rule Based Boolean Classifier. In: Ali, M., Kwon, Y., Lee, CH., Kim, J., Kim, Y. (eds) Current Approaches in Applied Artificial Intelligence. IEA/AIE 2015. Lecture Notes in Computer Science(), vol 9101. Springer, Cham. https://doi.org/10.1007/978-3-319-19066-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19066-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19065-5

  • Online ISBN: 978-3-319-19066-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics