Equivalence Transformations for the Design
of Interorganizational Data-Flow

Julius Képke and Johann Eder®)

Department of Informatics-Systems, Alpen-Adria Universitéit, Klagenfurt, Austria
{julius.koepke, johann.eder}@aau.at

Abstract. Distributed interorganizational processes can be designed by
first creating a global process, which is then split into processes or views
for each participant. Existing methods for automating this transforma-
tion concentrate on the control flow and neglect either the data flow or
address it only partially. Even for small interorganizational processes,
there is a considerably large number of potential realizations of the data
flow. We analyze the problem of generating message exchanges to realize
the dataflow in depth and present a solution for constructing data flows
which are optimal with respect to some design objectives. The approach
is based on a definition of the correctness of data flow and a complete
set of transformations which preserve correctness and allow to search for
an optimal solution from a generated correct solution.

1 Introduction

Interorganizational business processes, a key technology to facilitate interorgani-
zational cooperation and e-business, face the challenge to retain the advantages
of intraorganizational business process management for the design of enterprise
information systems - which extensively takes advantage of a central coordi-
nation - while expanding the technology to fully distributed collaborations of
autonomous entities. One of the major differences between centralized and dis-
tributed process management is the access to data: uniform access to a joint
central data store versus distributed management of data with explicit exchange
of data via messages.

We focus on a phase in the development of an interorganizational workflow
where the explicit dataflow between participants is established. Starting point
of our considerations is a process definition which assumes a global data store.
This model is then augmented with messages for passing data between partic-
ipants such that the process model can be executed in a fully distributed way,
respectively projected onto the participants to define the interface of their inter-
nal process (e.g. by process views [3,4]). An initial process definition consists of
a set of activities, the control flow between them, assignment of the activities to
participants, and input and output parameters of activities. Many approaches
such as [7,10,14,15,26, 28] start with a global process definition and follow a top
down or mixed strategy. A global process definition including input and out-
put data already implicitly defines the data flow between participants. For the
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explicit realization of the data flow, however, there are numerous possibilities
[17,21]. Nevertheless, there are no approaches which take this multitude of solu-
tions explicitly into account and, therefore, cannot reason about the quality of
the solution. While [25,26,28] do not consider data flow at all, [14,15] restrict
the data flow to the distribution of decision variables. [7,10] address data flow,
however, only a single solution based on one fixed strategy is generated.

Take for example the following trivial process chunk: lets an activity A pro-
duce the parameters x and y, the succeeding activity B updates z, and the third
activity C needs = and y. There are basically two solutions: (a) transitive trans-
fer: the interface of B is widened to also include y (assuming that B is also
admitted to see y) such that B can pass y to C, or (b) explicit data channel [21]:
A sends y directly to C' which requires additional messaging activities which
are not yet included in the process definition. Now consider that B is executed
conditionally. A simple solution, as proposed by [7] is that A always sends z and
y to C. On the one hand, this results in additional message overhead and on
the other hand C' may not even be allowed to get access to the (intermediate)
value of z, if B is executed. If this is the case a better solution would be to only
transfer x from A to C, if B is not executed later.

One can easily see that for a given process definition as above there are
numerous solutions for establishing a correct explicit data flow. We can reason
about properties of a solution and define criteria, such as the number of (addi-
tional) data transfers via messages, the number of transitively passed data, etc.,
for choosing among the possible solutions.

The major contribution of this paper is a set of equivalence transformations
on processes with explicit data flow that allow us to define the complete solution
space in which we can (heuristically) search for the best solution with respect
to constraints and an objective function.

The results presented here can be used for several purposes: to automatically
generate the explicit data flow in interorganizational workflows, to check whether
a participant with a given unchangeable process interface can be accommodated
to join the interorganizational workflow, or to verify and evaluate procedures
and guidelines for establishing the data flow for interorganizational processes.

2 Process Model

2.1 Basic Process Model

We follow here the approach that an interorganizational business process is
defined as a process rather than as a set of protocols between two participants.
For defining the process we use block-structured workflow nets [9] supporting the
usual basic control flow patterns sequence, par split / join, and xor split/join
[24,27]. We focus on block structured workflow-nets as they prevent typical flaws
of unstructured business processes dealing with data [1] and are also in line with
the WS-BPEL [19] standard. The process definition is extended with data defi-
nition, i.e. global variables may be defined and for each activity we denote which
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variables are its input and its output. Furthermore, we assign to each activity
and each control step one of the participants as actor.

In our notation, A,(R,W) is an activity step where A is the label of the
task to be executed by participant a. R defines the set of input variables, W
defines the set of output variables. Abstract blocks are placeholders for any sub-
process (including empty ones) and are represented by their label. SEQ(A, B)
defines a sequence of the blocks A and B. Sequences can also be defined by
nesting: SEQ(A,SEQ(B,C)) = SEQ(A,B,C). XORy,; pj(chb, A, B) defines a
xor-block, where the xor-split is executed by participant px, the xor-join is exe-
cuted by participant pj. Block A is executed, if the condition ¢b holds, otherwise
B. PAR,; ;(A, B) defines a par-split, where the split is executed by participant
ps and the join is executed by participant pj. We also use a graphical repre-
sentation which in analogy to the usual BPMN notation. The major difference
is that we show which the participant executing a step as subscript, the set of
input and output variables of activity-steps, and the condition of xor-splits. See
Fig. 1, 2, 3, 4 for examples. A communication step (also called send-receive step)
is denoted by SRs(X,pn,b). It defines that participant s sends the content of
the set of variables X to participant pn, if the condition b holds. In the graphi-
cal notation we represent send-receive steps in analogy to BPMN choreography
tasks. See the first step of T'S1a in Fig. 2 as an example for SRy, (X, pn,b). A
communication step is implemented as a sending task in the local process of the
sender and as a receiving task in the local process of the receiver.

2.2 Decision Model and Coordination

The xor-split requires special attention in interorganizational processes. There
are the following possibilities: (1) The condition is not defined in the global
process, or (2) the condition is defined using some global variables. In case (1)
the actor of the XOR-split makes the decision and informs the other participants,
if necessary. In case (2) each participant could make the decision. However, this
requires that all participants receive all variables appearing in the condition to
make the decision (i.e. evaluate the condition). This may result in additional
communication overhead. Therefore and for providing a uniform treatment for
both cases we treat case (2) like case (1): the actor of the xor-split evaluates the
condition.

There are several possibilities for the coordination of different participants:

(1) deferred constructs, where the participants are implicitly informed by the
message they receive or do not receive. For an example, step By in Fig. 1 does
not need to know about the decision of the xor-split. Only when B, is called
participant b joins the process. In contrast participant a who executes the steps
A, and E 4 must also be informed if E, is not called. Otherwise, a would wait
forever to be called. (See also death paths elimination in BPEL [10].)

(2) the actor sends the result of the decisions to the other participants. This
allows each participant to execute each (required) xor-block locally.

We follow the second approach and require that for any XOR,; p;(b, A, B)
the condition b refers only to one single boolean variable called decision variable,
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Fig. 1. Implicit data flow in an interorganizational process

which is output of a preceding activity called decision step DESCy,({...}, {b})
with the same actor as the xor-split. This is not a restriction of the generality as
this pattern can be generated automatically. For the coordination it is important
that all participants take the same decisions. Since variables can in general be
updated, dependent xor-gateways or send-receive steps rely on the value a deci-
sion variable had when it was written by the deciding participant. To make our
life (and that of workflow designers) easier, we require that decision variables
must only be written once.

Data access within parallel blocks may lead to race conditions. In an intraor-
ganizational setting this can be resolved by a transactional data store. For dis-
tributed processes we do not assume a distributed transactional data store and,
therefore, do not allow parallel read-write or write-write dependencies between
variables, i.e. if a variable is output of some activity it must not appear as input
or output in branches parallel to this activity.

2.3 Realizing Interorganizational Data Flow

The process definition discussed above uses global variables as if there would be
a global data store like in intraorganizational processes. This means it is assumed
that each activity can access the most recent value of each variable. Implicitly
this defines a data flow between the participants. For the fully distributed enact-
ment of interorganizational processes we have to realize this implicit data flow
by augmenting the process definition with explicit message exchanges which pass
the content of variables between participants.

Fig. 1 presents an example process using the graphical representation. The
first step is represented as A,({z}{z}) in the textual representation. Therefore,
step A of participant a has variable x as input and as output.

In the example there are 5 data flow dependencies between tasks of different
participants shown with dotted lines. Data flow dependencies can be conditional.
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For example step E, only needs x from By, if B, and E, are executed (if the
conditions b1 and b2 hold). In order to support an interorganizational operation
of the process, each data flow between different participants needs to be imple-
mented by messages. Now there exist multiple solutions to support the data
needs of F,. We may add a message exchange right after the execution of By. In
this case the message is only sent if By is executed. However, it will always be
sent, even if F, is not executed. The decision whether F, is executed is made
later. Therefore, it is impossible to predict whether the message needs to be sent
or not. However, sending the message does not lead to an error in the data flow.
A message is sent but its contents are not consumed as they are overwritten by
a succeeding message. So this solution contains redundant message exchanges
but it is correct. Another option is to add the message exchange sending x from
b to a directly before E,. However, in this case it must only be executed if By
was executed. Otherwise a will get a wrong value for . While b knows whether
B, was executed participant a does not and therefore needs to know whether a
message will arrive.

To cope with this problem our process model supports the notion of con-
ditional message exchanges (see Sect. 2.3) where the condition is a boolean
expression consisting of decision variables. In our example, we can now add
the send-receive step SRy ({z},a,bl) directly before E, to solve the previously
discussed problem.

2.4 Process Model Definitions

A process model consists of sets of participants P, variables V (including boolean
decision variables D), task labels T, and a block defined recursively as follows:
Let S be a task label, R,W sets of variables, ¢ a decision variable, b a boolean
expression consisting of the decision variables dy, . . . d,, then S, (R, W) is a block
(activity step), SRs(X,r,b) is a block (communication step), the empty block
is a block, and if A and B are blocks, then SEQ(A, ..., B), XOR,1 p2(c, A, B),
PARp1 p2(A, B) are blocks. All pl, p2 are called actors of their respective blocks,
s is the sender and r is the recipient of a communication step, R, X, ¢, and
dy,...d, are (sets of) input variables, W and X are output variables. In addition,
a block inherits all input variables of its superordinate block.

Predecessor and successor relationships are defined as usual.

An initial process does not contain communication steps. An augmentation
of an initial process P contains all the steps of P in the same topological order
and some communication steps in addition. Each instantiation I of the set of
decision variables of a process P constitutes an instance type P’ which is defined
as a sub-model of P where each xor retains exactly one sub-block (depending
on the value of the decision variable) and only those communication steps where
the condition is true while the other sub-block is empty.

We now define that such an augmented process correctly realizes the implicit
data flow of an interorganizational process if for centralized and distributed
executions the value of each input variable of a step originates from the output
of the same activity.
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The origin of an input parameter x in block a of an instance type I, o( P, a, ),
is defined as follows: If b is the closest predecessor activity step of a with x as
output parameter then o(P!, a,z) = b.

An initial process is correct, if all input parameters of all steps have a unique
origin. This correctness requirements covers the usual data flow faults like unini-
tialized variables and race conditions [23]. We emphasize that due to the hier-
archical definition of process models it is not possible to define an incorrect
workflow net.

For the distributed execution of an augmented process we have to consider
that a participant only can access the content of a variable if it was produced
locally or if it was received through a communication steps.

The distributed origin of the input parameter x in block a of an instance
type PI, 0¢(P! a,z) is defined as follows: Let p be the actor or sender of a
and let b be the closest predecessor step of a with x as output parameter and
p as actor (for activity steps) or recipient (for communication steps). If b is an
activity step then o?(P! a,z) = b, if b is a communication step SR,(X,p,b)
then o?(P!, a,x)=0%(PL,b,x).

Definition 1. Correct Augmentation. The augmentation P of a process is
correct, iff for each instantiation I of decision variables, for each input variable
x of each block a: o( P!, a, x) exists and is unique and o%(P?,a,z) = o(P!,a,x).

3 Equivalence Transformations on Augmented Processes

There exists numerous correct augmentations of the data flow of a process. For
example all updated variables may be sent as soon as possible to all participants,
they may be sent as late as possible or every data-exchange may follow the
control-flow including transitive transfers. We present a set of transformations
on augmented processes that allow to derive all other correct augmentations.

3.1 Equivalence Transformations on Sequences

We provide a graphical description of equivalence transformations on sequences
in Fig. 2 and discuss each transformation shortly in the remainder of this section.
The function ref(b) returns the set of all variables, referenced by the boolean
expression b.

TSla - Swap (Send-Receive / Activity): A send-receive step ¢ can
be swapped with an activity a, unless a is the destination of ¢ or a writes to
some variable transmitted or referenced by ¢: SEQ(SRp1 (X, pn,b), ap2 (R, W)) =
SEQ(ap2(R, W), SRp1(X,pn,b)), unless WNX #{}) V (RNX #{} Apn=
p2) Vref(b) C W)

TS1b - Swap (Send-Receive - Send-Receive): Two send-receive steps
in a sequence can be swapped, unless one is the destination of the other.
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SEQ(SRpl(Xapnab1)7SRpQ(Yapmybz)) = SEQ(SRpQ(Kpmvb2)7SRp1(X7pn7
bl)), unless: (pn =p2Vpm =pl) A(X NY £{}Vvref(bl) CY Vref(b2) C X).

TS2 - Change Sender: Directly sending variables to multiple partici-
pants is equivalent to transitive sending of the variables to these participants.
SEQ(SRp1(X,pn,b), SRy, (X, pm, b)) = SEQ(SRp1 (X, pn,b), SRy (X, pm, b))

TS3 - Remove/Add at End: A send receive step at the end of a process
is equivalent to no send-receive step at the end of the process. SEQ(A, SR, (X,
p',b)) = A, when the sequence is located at the upper most level of the process.

TS4 - Absorb/Add: A send-receive step that sends only variables writ-
ten by some succeeding activity step is equivalent to only the execution of
the activity-step: SEQ(SRp1(X, pn,b), ap2(R, W)) = ap2(R, W) where X C W,
unless R N X # {} A pn = p2.

TS5 - Split/Merge of Variables It is equivalent to transmit a set of
variables by one single send-receive step or by two send-receive steps:
SEQ(SRp1(X,pn,b), SRy (Y,pn, b)) = SR,1 (X UY, pn,b)

TS6 - Split/Merge Conditions: Two send-receive steps in a sequence that
transfer the same set of variables from the same source participant to the same
target participant are equivalent to one single send-receive, which is executed if
at least one of the conditions holds:

SEQ(SRp1(X,pn,b1), SRy (X,pn, b2)) = SRy (X, pn, {bl V b2})

3.2 Equivalence Transformations on XOR

We first introduce two predicates: hasValue and takesPart. hasValue(pl,var,
pos) returns true, if participant pl certainly has the value of the variable var
before the execution of the block pos. takesPart(zorBlock,participant) returns
true, if the participant participant participates in any step of the xor-block
xzorBlock (recursively). Fig. 3 shows all equivalence transformations on xor-
blocks.

TX1 - Passing XOR-splits One send-receive step s located directly before
a xor-split is equivalent to two send-receive steps with the same parameters
as s, where one is in each branch of the xor-split directly following the xor-
split, if the sender and the receiver of s have the current value of the decision
variable: SEQ(SRp1(X, pn,b), XOR2 p;(xb, A, B)) = XORy2 1 (xb, SEQ(SR,1
(X,pn,b) ,A),SEQ(SRy1(X,pn,b),B)), if hasValue(pl,xb, XSp2p,; A has
Value (pn, xb, X Spa p;).

TX2 - Passing XOR-Join TX2a Passing XOR-Join on true: One send-
receive step s located directly before a xor-join in the true branch of a xor-split is
equivalent to one send-receive step s’ directly after the xor-join, if all parameters
of s’ and s are equivalent but the condition in s’ is a conjunction of the one of s
and the decision variable of the xor-split. XORs ,,;(2b, SEQ(A, SR, (X, pn, b)),
B) = SEQ(XORy3;(xb, A, B), SR)1 (X, pn, {b A xb})
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Fig. 2. Equivalence transformations on sequences

TX2b Passing Join on false: XORy p;(xb, A, SEQ(B, SRy1(X,pn, b)) =
SEQ(XORys (b, A, B), SRy (X, pn, {b A —xb})

TX3 - Jump over XOR-Block A send-receive step s, which is located
directly before a xor-split is equivalent to a send-receive step directly after the
corresponding xor-join, if s transmits only the decision variable of the xor-split
and the target participant of s does not take part in the xor-block or any sub-
block of it: SEQ(SRp(X,pn,b), XOR,s ,;(xb, A, B)) = SEQ(XORps p;(xb,
A,B),SR,1 (X ,pn,b)), if =takesPart(XSpe,pn) A X = {xb}

TX4 - Inherit Conditions Given a send-receive step s with a condition b,
which is nested into some xor-block x referencing the decision variable bx: b = b
A bz, if s is in Block A of z and b = b A —bx if s is in Block B of x.

TX1b - Add Send/Receive after XOR-Split Given a send-receive step
s as a direct successor of a xor-split, we can add another send-receive step s’ with
the same parameter as s as a direct successor of the xor-split in the other branch.
This is a one-way transformation. XORps ,,; (20, SEQ(SRy1(Xpn,b), A), B) V
XORPZP]' (l‘b, A, SEQ(SRZH (Xpn, b), B)
= XORy2,;(xb, SEQ (SRp1 (X,pn,b), A),SEQ(SRy (X,pn,b), B)).
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Fig. 3. Equivalence transformations for XOR

3.3 Equivalence Transformations on Parallel Blocks

Equivalence transformations on par-blocks need to consider in which branch
reading or writing activities of the transmitted variables are located. We first
define the predicates hasWriter, hasReader and inB:

hasWriter(var, Block) returns true if the variable var is written anywhere
in the block (recursively). hasReader(var,block,participant) returns true, if
the variable var is read by participant participant in the block (recursively).
inB(var, Block, participant) is true, if hasWriter(var, Block) or hasReader
(var, block, participant). Fig. 4 illustrates TPla, TPlc, TP2a as examples.

TP1: Passing PAR-Split: A send-receive-step, which is located directly
before a par-split is equivalent to a send-receive step in the first position of the
branch with a consumer or a writer to every transferred variable. There are
the following cases: A consumer or writer for every transmitted variable is in
block A (TP1la), a consumer or writer for every transmitted variable is in block
B (TP1b), a consumer for every transmitted variable is in Block A and in B
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(TP1c). If there is no consumer of any transmitted variable in A and B, then
also TPla and TP1b applies.

TPla: SEQ(SRyi(X,pn,b), PARys »; (A, B)) = PARys ;i (SEQ(SRy (X,
pn,b), A), B), if Yo € X : (inB(v, A,pn) A —inB(v, B,pn)) V (minB(v , A,pn) A
—inB(v, B, pn))

TP1b: SEQ(SRy1(X,pn,b), PARys i (A, B)) = PARys i (A, SEQ(SRp (X,
pn,b),B)), if Yo € X : (inB(v, B,pn) A ~inB(v, A,pn)) V (minB(v, A ,pn) A
—inB(v, B, pn))

TPlc: SEQ(SRpy(X,pn,b), PAR,s;(A,B)) = PARp, ;i (SEQ(SRp (X,
pn, b),A), SEQ(SR,1(X,pn,b),B)),if Vv € X : (inB(v, A,pn) AinB(v, B,pn))

TP2: Passing PAR-Join: A send-receive step located in some branch B1
of a par-split directly before a par-join is equivalent to an identical send-receive
directly after a par-join, if all variables transmitted by the send-receive step are
read or updated in branch B1 and none is read or updated in the other branch,
or if none of the variables is read or updated in any branch. In particular there
are the cases: A reader or writer only in branch A, only in Branch B or nowhere:

TP2a: PAR,s »;(SEQ(A, SRy (X, pn, b)), B) =
SEQ(PARys p;(A,B), A, SRp1 (X, pn, b)), if Vv € X : (inB(v, A, pn) A
—inB(v, B,pn)) V (minB(v, A, pn) A —inB(v, B, pn))

TP2b:PARys ,;(SEQ(SR, (X, pn,b), A), B) =
SEQ(PARys p;(A,B), A, SRp1 (X, pn, b)), it Vo € X : (inB(v, B,pn) A
—inB(v, A,pn)) V (—inB(v, A, pn) A ~inB(v, B,pn))

3.4 Correctness and Completeness

Theorem 1 (Correctness of the Equivalence Transformations). Any application
of any of the transformations on a correct augmentation of a process P (see
Definition 1) P leads to another correct augmentation of the process P.

We prove the correctness of each transformation by showing that the trans-
formation does not change origin and d-origin of all input variables of each block
(details in [13]).

Theorem 2 (Completeness of the set of equivalence transformations). Every
correct augmentation of a process P can be created by the application of the
transformations starting from any correct augmentation of the process P.

We define a normal form for augmentations of a process and show that,
if an augmentation cannot be transformed to this normal form it is incorrect.
The theorem then follows from the fact that each transformation has an inverse
(details in [13]).
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Fig. 4. Example equivalence transformations on PAR-split

4 Applications

The presented equivalence transformations provide a formal grounding for vari-
ous applications dealing with data flow of interorganizational processes. We will
present three applications scenarios as examples here.

4.1 Optimizing Message Exchanges Under Constraints

Given an interorganizational process without communication steps we can gener-
ate the complete solution space of correct implementations of the data flow. This
allows to select the solution that best fits the needs of the participants based on
objective functions and constraints. The best solutions heavily depends on user
requirements. For example a major goal could be to achieve simple processes
with minimal number of send-receive steps and favor message exchanges that
can be integrated into the control-flow, while accepting some potentially redun-
dant transfers. In another scenario minimizing the transferred data at runtime
could be the major goal, when communications costs are high. For any of the
previous examples additional constraints may exist. For example a participant
may not be allowed to receive the value of a certain variable at all or after some
specific step or a participant should not receive messages from a predefined set
of other participants.
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We have implemented a proof-of-concept prototype that uses best first search
to find optimal solutions based on the transformations starting from an initial
augmentation where all values are broadcasted to all participants after each
modification. It allows the user to define an objective function based on various
parameters including the weighted number of send-receive steps, the weighted
number of transmitted variables and the number of transfers from unknown par-
ticipants. The weight of send-receive steps is based on their nesting level within
xor-blocks and their conditions. For the weighted number of send-receive we do
not count communication steps, which can be integrated into the control-flow.
When a solution is derived, local processes can be generated for each partici-
pant by simple projection of the steps onto each participant [15]. These local
processes act as interfaces for the private processes of the participants. We have
conducted initial experiments with our implementation and the generated solu-
tions are promising. Future work will address starting with a more efficient ini-
tial augmentation and the application of sophisticated heuristics and a flexible
framework for modeling various constraints.

4.2 Integrating Participants with Existing Processes

The previous scenario assumed a top-down development paradigm. However,
in many cases participants already have existing processes that may not be
changeable leading to a mixed approach. When participants with existing pro-
cesses want to join an interorganizational process only solutions that match their
(data) interfaces are applicable. Therefore, the rules can be applied both to test
whether their (data) interfaces are compatible with the interorganizational pro-
cess and to select the best solution based on an objective function.

This can be realized in analogy to the previous application scenario. The only
difference is that we start with an interorganizational process with fixed (data)
interfaces of one or more participants. In a next step an initial augmentation is
created. Then solutions can be generated. However, only those are acceptable,
where the participants with existing interfaces have only send-receive steps that
are equivalent to their existing interfaces. In other words solutions are gener-
ated, where the non fixed participants act as mediators for the fixed ones. An
example is the following: One participant needs to receive the variables a, b, ¢ via
one single message from participant e. However, a, b and ¢ are all last updated
by different other participants. Then the equivalence transformations can be
used to generate solutions where participant e collects the results of the other
participants and then sends the variables with one single message.

4.3 Validation of Guidelines and Methods

Using the equivalence definition we can also validate guidelines for designing
the dataflow or procedures generating the dataflow by analyzing whether the
resulting augmented processes can be transformed to a process known to be
correct (e.g. the initial processes described in Section 4.1 above).
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5 Related Work

We propose a set of equivalence transformations on the realization of the data
flow of inter-organizational processes to derive (interfaces to) local processes
from a global process definition. Approaches like the public to private approach
and multi-party contracts [25,26,28] - address the projection of the control-flow
onto different participants and the correct implementation of control-flow in the
private process. Our approach complements these approaches for the correct
implementation of the data flow specification using message exchanges.

Typical choreography approaches [2] either in form of interconnection model-
ing or in form of interaction-centric modeling are both supported by BPMN (2)
[20]. Interconnection modeling wires multiple (collaboration) models together
using message exchanges. Interaction-centric modeling is supported by choreog-
raphy diagrams. An advantage of the interaction-centric style is that a global
view of the choreography exists, preventing typical flaws of not properly aligned
models. However, they still require that the message exchanges are modeled
explicitly. We follow a different strategy. We begin with a global process describ-
ing the goals of the choreography in terms of control-and data flow requirements
- message exchanges are not part of the global process. Instead our approach
allows to automatically generate and optimize the required message exchanges
(choreography) between the participants. We address the data flow perspective
here, while the correct projection of the control flow is described in [14,15].

A recent approach addressing data in choreographies is [16]. It proposes mod-
eling guidelines that allow to derive message contents of a given choreography
automatically. It is based on a global data model which is mapped to the local
ones of each participant. Since our rules allow to automatically generate opti-
mized message exchanges (choreographies) our output can be used as an input
for [16] in order to resolve heterogeneities between the data representations of
the participants. [17] proposes a set of design patterns for the implementation
of data flows satisfying data dependencies. Instead of proposing a fixed set of
common patterns we allow to automatically select the best solution according
to the users requirements.

Numerous approaches deal with the automatic partitioning of BPEL pro-
cesses with the aim to find assignments of participants that result in optimal
data flow [5,8,18,30]. This setting is very different from our goal, where the
assignment of participants is fixed. Directly related to our approach are role
based partitioning methods for executable processes such as [6,7,10-12]. These
approaches also allow to derive processes for each participant. However, the
implementation of the data flow is based on a fixed strategy and consequently
provide only one solution is provided. An approach focusing on privacy aspects
[29] allows to define which participants may exchange messages and to automat-
ically find alternative paths if certain exchanges are forbidden. In contrast, we
have provided a general approach for optimizing the implementation of data-
transfers based on various criteria where privacy issues and constraints - among
those also privacy constraints.

The correctness of the (implicit) data flow of intraorganizational processes is
addressed in works such as [22,23]. In contrast, our approach spans the solution
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space for the correct realization of interorganizational data flow via message
exchanges, taking a (correct) global process with implicit data flow as input.

6 Conclusion

Interorganizational business process management - a promising techniques to
foster collaboration and e-business - still requires research and development, in
particular in architecture, design and implementation techniques. There exists
various implementations for the data flow of an interorganizational process. In
this paper we have provided a comprehensive set of equivalence transformations
that can act as a solid foundation for several applications such as: Top-down
development of interorganizational processes including the automatic optimiza-
tion of the data flow between different participants and the enforcement of var-
ious constraints (e.g. security / access rights), or the validation of methods and
procedures for designing interorganizational processes with data flow. It allows
to systematically test the compatibility of an existing process with some interor-
ganizational process not only regarding the control-flow but also regarding the
(optimized) data flow.
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