Abstract
The basic idea of algorithm portfolio [1] is to create a mixture of diverse algorithms that complement each other’s strength so as to solve a diverse set of problem instances. Algorithm portfolios have taken on a new and practical meaning today with the wide availability of multi-core processors: from an enterprise perspective, the interest is to make best use of parallel machines within the organization by running different algorithms simultaneously on different cores to solve a given problem instance. Parallel execution of a portfolio of algorithms as suggested by [2, 3] a number of years ago has thus become a practical computing paradigm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Huberman, B., Lukose, R., Hogg, T.: An economics approach to hard computational problems. Science 275(3), 51–54 (1997)
Gomes, C., Selman, B.: Algorithm portfolios. Artif. Intell. 126, 43–62 (2001)
Petrik, M., Zilberstein, S.: Learning parallel portfolios of algorithms. Ann. Math. Artif. Intell. 48, 85–106 (2006)
Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms for portfolio-based selection. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 210–216 (2010)
Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC-instance-specific algorithm configuration. In: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010), pp. 751–756 (2010)
Lindawati, Yuan, Z., Lau, H.C., Zhu, F.: Automated parameter tuning framework for heterogeneous and large instances: case study in quadratic assignment problem. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 423–437. Springer, Heidelberg (2013)
Kotthoff, L.: LLAMA: leveraging learning to automatically manage algorithms. Technical Report (2013). arXiv:1306.1031
Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012)
Hutter, F., Hoos, H., Stutzle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the National Conference on Artificial Intelligence. vol. 22, pp. 1152. AAAI Press, Menlo Park, CA. MIT Press, Cambridge, MA; London (2007)
Rice, J.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)
Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: An overview. Exp. methods Anal. Optim. Algorithms 153, 311–336 (2010)
Yuan, Z., Stützle, T., Montes de Oca, M.A., Lau, H.C., Birattari, M.: An analysis of post-selection in automatic configuration. In: Proceeding of the 15th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO 2013), pp. 1557–1564. ACM (2013)
Ng, K., Gunawan, A., Poh, K.: A hybrid algorithm for the quadratic assignment problem. In: Proceedings of International Conference on Scientific Computing, Nevada, USA (2008)
Gunawan, A., Lau, H.C., Lindawati, : Fine-Tuning algorithm parameters using the design of experiments approach. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 278–292. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mısır, M., Handoko, S.D., Lau, H.C. (2015). ADVISER: A Web-Based Algorithm Portfolio Deviser. In: Dhaenens, C., Jourdan, L., Marmion, ME. (eds) Learning and Intelligent Optimization. LION 2015. Lecture Notes in Computer Science(), vol 8994. Springer, Cham. https://doi.org/10.1007/978-3-319-19084-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-19084-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19083-9
Online ISBN: 978-3-319-19084-6
eBook Packages: Computer ScienceComputer Science (R0)