Skip to main content

ADVISER: A Web-Based Algorithm Portfolio Deviser

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8994))

Included in the following conference series:

  • 1063 Accesses

Abstract

The basic idea of algorithm portfolio [1] is to create a mixture of diverse algorithms that complement each other’s strength so as to solve a diverse set of problem instances. Algorithm portfolios have taken on a new and practical meaning today with the wide availability of multi-core processors: from an enterprise perspective, the interest is to make best use of parallel machines within the organization by running different algorithms simultaneously on different cores to solve a given problem instance. Parallel execution of a portfolio of algorithms as suggested by [2, 3] a number of years ago has thus become a practical computing paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bitbucket.org/lkotthoff/llama.

  2. 2.

    http://www.hyflex.org/.

  3. 3.

    http://research.larc.smu.edu.sg/autopartune/.

References

  1. Huberman, B., Lukose, R., Hogg, T.: An economics approach to hard computational problems. Science 275(3), 51–54 (1997)

    Article  Google Scholar 

  2. Gomes, C., Selman, B.: Algorithm portfolios. Artif. Intell. 126, 43–62 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Petrik, M., Zilberstein, S.: Learning parallel portfolios of algorithms. Ann. Math. Artif. Intell. 48, 85–106 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms for portfolio-based selection. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 210–216 (2010)

    Google Scholar 

  5. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC-instance-specific algorithm configuration. In: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010), pp. 751–756 (2010)

    Google Scholar 

  6. Lindawati, Yuan, Z., Lau, H.C., Zhu, F.: Automated parameter tuning framework for heterogeneous and large instances: case study in quadratic assignment problem. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 423–437. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Kotthoff, L.: LLAMA: leveraging learning to automatically manage algorithms. Technical Report (2013). arXiv:1306.1031

  8. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Hutter, F., Hoos, H., Stutzle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the National Conference on Artificial Intelligence. vol. 22, pp. 1152. AAAI Press, Menlo Park, CA. MIT Press, Cambridge, MA; London (2007)

    Google Scholar 

  10. Rice, J.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Google Scholar 

  11. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

    MATH  Google Scholar 

  12. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: An overview. Exp. methods Anal. Optim. Algorithms 153, 311–336 (2010)

    Google Scholar 

  13. Yuan, Z., Stützle, T., Montes de Oca, M.A., Lau, H.C., Birattari, M.: An analysis of post-selection in automatic configuration. In: Proceeding of the 15th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO 2013), pp. 1557–1564. ACM (2013)

    Google Scholar 

  14. Ng, K., Gunawan, A., Poh, K.: A hybrid algorithm for the quadratic assignment problem. In: Proceedings of International Conference on Scientific Computing, Nevada, USA (2008)

    Google Scholar 

  15. Gunawan, A., Lau, H.C., Lindawati, : Fine-Tuning algorithm parameters using the design of experiments approach. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 278–292. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Mısır .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mısır, M., Handoko, S.D., Lau, H.C. (2015). ADVISER: A Web-Based Algorithm Portfolio Deviser. In: Dhaenens, C., Jourdan, L., Marmion, ME. (eds) Learning and Intelligent Optimization. LION 2015. Lecture Notes in Computer Science(), vol 8994. Springer, Cham. https://doi.org/10.1007/978-3-319-19084-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19084-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19083-9

  • Online ISBN: 978-3-319-19084-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics