Abstract
This paper introduces an automated approach called OSCAR that combines algorithm portfolios and online algorithm selection. The goal of algorithm portfolios is to construct a subset of algorithms with diverse problem solving capabilities. The portfolio is then used to select algorithms from for solving a particular (set of) instance(s). Traditionally, algorithm selection is usually performed in an offline manner and requires the need of domain knowledge about the target problem; while online algorithm selection techniques tend not to pay much attention to a careful construction of algorithm portfolios. By combining algorithm portfolios and online selection, our hope is to design a problem-independent hybrid strategy with diverse problem solving capability. We apply OSCAR to design a portfolio of memetic operator combinations, each including one crossover, one mutation and one local search rather than single operator selection. An empirical analysis is performed on the Quadratic Assignment and Flowshop Scheduling problems to verify the feasibility, efficacy, and robustness of our proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Using Scikit http://scikit-learn.org.
- 2.
Using Java-ML http://java-ml.sourceforge.net/.
- 3.
No crossover + no mutation + no local search case is ignored.
- 4.
References
Rice, J.: The algorithm selection problem. Adv. comput. 15, 65–118 (1976)
Gomes, C., Selman, B.: Algorithm portfolio design: theory vs. practice. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI 1997), Providence/Rhode Island, USA, pp. 190–197 (1997)
Huberman, B., Lukose, R., Hogg, T.: An economics approach to hard computational problems. Science 275, 51 (1997)
Da Costa, L., Fialho, A., Schoenauer, M., Sebag, M., et al.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2008), Atlanta, Georgia, USA, pp. 913–920 (2008)
Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64, 1695–1724 (2013)
Moscato, P., Cotta, C., Mendes, A.: Memetic algorithms. In: Moscato, P., Cotta, C., Mendes, A. (eds.) New Optimization Techniques in Engineering, pp. 53–85. Springer, Heidelberg (2004)
Krasnogor, N., Smith, J.: A memetic algorithm with self-adaptive local search: TSP as a case study. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2000), Las Vegas/Nevada, USA, pp. 987–994 (2000)
Yuan, Z., Handoko, S.D., Nguyen, D.T., Lau, H.C.: An empirical study of off-line configuration and on-line adaptation in operator selection. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 62–76. Springer International Publishing, Switzerland (2014)
Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4, 284–294 (2000)
Handoko, S.D., Kwoh, C.K., Ong, Y.S.: Feasibility structure modeling: an effective chaperone for constrained memetic algorithms. IEEE Trans. Evol. Comput. 14, 740–758 (2010)
Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)
Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011)
Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios based on cost-sensitive hierarchical clustering. In: Proceedings of the 23rd International Joint Conference on Artifical Intelligence (IJCAI 2013), pp. 608–614 (2013)
Stern, D., Herbrich, R., Graepel, T., Samulowitz, H., Pulina, L., Tacchella, A.: Collaborative expert portfolio management. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), Atlanta/Georgia, USA, pp. 179–184 (2010)
Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 210–216 (2010)
Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)
KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: Satenstein: automatically building local search sat solvers from components. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), vol. 9, pp. 517–524 (2009)
O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Irish Conference on Artificial Intelligence and Cognitive Science (2008)
Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation (GECCO 2005), pp. 1539–1546. ACM (2005)
Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In: Resende, M., de Sousa, J. (eds.) Metaheuristics: Computer Decision-Making, pp. 523–544. Kluwer Academic Publishers, Dordrecht (2003)
Mısır, M.: Intelligent hyper-heuristics: a tool for solving generic optimisation problems. Ph.D. thesis, Department of Computer Science, KU Leuven (2012)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Quinlan, J.R.: C4.5. Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Lawler, E.: The quadratic assignment problem. Manag. Sci. 9, 586–599 (1963)
Burkard, R.E., Karisch, S.E., Rendl, F.: Qaplib-a quadratic assignment problem library. J. Global Optim. 10, 391–403 (1997)
Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)
Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)
Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 829–836. ACM (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mısır, M., Handoko, S.D., Lau, H.C. (2015). OSCAR: Online Selection of Algorithm Portfolios with Case Study on Memetic Algorithms. In: Dhaenens, C., Jourdan, L., Marmion, ME. (eds) Learning and Intelligent Optimization. LION 2015. Lecture Notes in Computer Science(), vol 8994. Springer, Cham. https://doi.org/10.1007/978-3-319-19084-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-19084-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19083-9
Online ISBN: 978-3-319-19084-6
eBook Packages: Computer ScienceComputer Science (R0)