Skip to main content

Quantum State Complexity of Formal Languages

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9118))

Included in the following conference series:

Abstract

In this extended abstract, our notion of state complexity concerns the minimal amount of descriptive information necessary for a finite automaton to determine whether given fixed-length strings belong to a target language. This serves as a descriptional complexity measure for languages with respect to input length. In particular, we study the minimal number of inner states of quantum finite automata, whose tape heads may move freely in all directions and which conduct a projective measurement at every step, to recognize given languages. Such a complexity measure is referred to as the quantum state complexity of languages. We demonstrate upper and lower bounds on the quantum state complexity of languages on various types of quantum finite automata. By inventing a notion of timed crossing sequence, we also establish a general lower-bound on quantum state complexity in terms of approximate matrix rank. As a consequence, we show that bounded-error 2qfa’s running in expected subexponential time cannot, in general, simulate logarithmic-space deterministic Turing machines.

M. Villagra is a research fellow of the Japan Society for the Promotion of Sciences (JSPS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Traditionally, “state complexity” refers to the minimal descriptional size of finite automata that recognize a language on all inputs and this notion has been proven to be useful to study the complexity of regular languages.

  2. 2.

    This model is sometimes referred to as “real time” because its tape head always moves to the right without staying still on any tape cell.

  3. 3.

    In other words, \(M\) recognizes a so-called “promise problem” \((L_n,\varSigma ^n-L_n)\) with error probability at most \(\varepsilon (n)\).

References

  1. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses, and generalizations. In: Proceedings of FOCS 1998, pp. 332–342 (1998)

    Google Scholar 

  2. Ambainis, A., ikusts, A., Valdats, M.: On the class of languages recognizable by 1-way quantum finite automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum finite automata. J. ACM 49, 496–511 (2002)

    Article  MathSciNet  Google Scholar 

  4. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM J. Comput. 31, 1456–1478 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Damm, C., Holzer, M.: Automata that take advice. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 149–158. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Dumer, I.: Covering spheres with spheres. Discret. Comput. Geom. 38, 665–679 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Freivalds, R.: Amount of nonconstructivity in deterministic finite automata. Theor. Comput. Sci. 411, 3436–3443 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freivalds, R., Ozols, M., Mančinska, L.: Improved constructions of mixed state quantum automata. Theor. Comput. Sci. 410, 1923–1931 (2009)

    Article  MATH  Google Scholar 

  9. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proceedings of FOCS 1997, pp. 66–75 (1997)

    Google Scholar 

  10. Krause, M.: Geometric arguments yield better bounds for threshold circuits and distributed computing. Theor. Comput. Sci. 156, 99–117 (1996)

    Article  MATH  Google Scholar 

  11. Lee, T., Shraibman, A.: Lower bounds in communication complexity. Found. Trends Theor. Comput. Sci. 3, 263–398 (2009)

    Article  MathSciNet  Google Scholar 

  12. Mereghetti, C., Palano, B., Pighizzini, G.: Note on the succinctness of determinsitic, nondeterminsitic, probabilistic and quantum finite automata. RAIRO–Theor. Inf. and Applic. 35, 477–490 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Moore, C., Crutchfield, J.: Quantum automata and quantum languages. Theor. Comput. Sci. 237, 275–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice. Inf. Process. Lett. 90, 195–204 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nishimura, H., Yamakami, T.: An application of quantum finite automata to interactive proof systems. J. Comput. Syst. Sci. 75, 255–269 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Watrous, J.: Space-bounded quantum complexity. J. Comput. Syst. Sci. 59, 281–326 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Watrous, J.: On the complexity of simulating space-bounded quantum computations. Comp. Complex. 12, 48–84 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yakaryilmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum finite automata. Disc. Math. Theor. Comput. Sci. 12, 19–40 (2010)

    MATH  MathSciNet  Google Scholar 

  19. Yamakami, T.: One-way reversible and quantum finite automata with advice. Inf. Comput. 239, 122–148 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zheng, S., Gruska, J., Qiu, D.: On the state complexity of semi-quantum finite automata. RAIRO–Theor. Inf. and Applic. 48, 187–207 (2014)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Yamakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Villagra, M., Yamakami, T. (2015). Quantum State Complexity of Formal Languages. In: Shallit, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2015. Lecture Notes in Computer Science(), vol 9118. Springer, Cham. https://doi.org/10.1007/978-3-319-19225-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19225-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19224-6

  • Online ISBN: 978-3-319-19225-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics