Abstract
The complexity and decidability of various decision problems involving the shuffle operation (denoted by ) are studied. The following three problems are all shown to be \(\mathsf{NP}\)-complete: given a nondeterministic finite automaton (\(\mathsf{NFA}\)) \(M\), and two words \(u\) and \(v\), is
, is
, and is
? It is also shown that there is a polynomial-time algorithm to determine, for \(\mathsf{NFA}\)s \(M_1, M_2\) and a deterministic pushdown automaton \(M_3\), whether
. The same is true when \(M_1, M_2,M_3\) are one-way nondeterministic \(l\)-reversal-bounded \(k\)-counter machines, with \(M_3\) being deterministic. Other decidability and complexity results are presented for testing whether given languages \(L_1, L_2\) and \(L\) from various languages families satisfy
.
The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708.
The research of I. McQuillan was supported, in part, by the Natural Sciences and Engineering Research Council of Canada.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. Syst. Sci. 8(3), 315–332 (1974)
Berstel, J., Boasson, L.: Shuffle factorization is unique. Theoret. Comput. Sci. 273, 47–67 (2002)
Biegler, F., Daley, M., McQuillan, I.: Algorithmic decomposition of shuffle on words. Theoret. Comput. Sci. 454, 38–50 (2012)
Biegler, F., McQuillan, I.: On comparing deterministic finite automata and the shuffle of words. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 98–109. Springer, Heidelberg (2014)
Bordihn, H., Holzer, M., Kutrib, M.: Some non-semi-decidability problems for linear and deterministic context-free languages. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 68–79. Springer, Heidelberg (2005)
Buss, S., Soltys, M.: Unshuffling a square is NP-hard. J. Comput. Syst. Sci. 80(4), 766–776 (2014)
Câmpeanu, C., Salomaa, K., Vágvölgyi, S.: Shuffle quotient and decompositions. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 186–196. Springer, Heidelberg (2002)
Daley, M., Biegler, F., McQuillan, I.: On the shuffle automaton size for words. J. Autom. Lang. Comb. 15, 53–70 (2010)
Domaratzki, M.: More words on trajectories. Bull. EATCS 86, 107–145 (2005)
Eremondi, J., Ibarra, O.H., McQuillan, I.: Deletion operations on deterministic families of automata. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 388–399. Springer, Heidelberg (2015)
Eremondi, J., Ibarra, O.H., McQuillan, I.: Insertion operations on deterministic reversal-bounded counter machines. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 200–211. Springer, Heidelberg (2015)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman and Company, New York (1979)
Geller, M.M., Hunt III, H.B., Szymanski, T.G., Ullman, J.D.: Economy of description by parsers, dpda’s, and pda’s. Theoret. Comput. Sci. 4, 143–153 (1977)
Ginsburg, S., Spanier, E.H.: Mappings of languages by two-tape devices. J. ACM 12(3), 423–434 (1965)
Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn multicounter machines. J. Comput. Syst. Sci. 22(2), 220–229 (1981)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)
Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)
Ibarra, O.H.: Automata with reversal-bounded counters: a survey. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 5–22. Springer, Heidelberg (2014)
Jȩdrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theoret. Comput. Sci. 250, 31–53 (2001)
Kari, L.: On language equations with invertible operations. Theoret. Comput. Sci. 132(1–2), 129–150 (1994)
Kari, L., Konstandtinidis, S., Sosík, P.: On properties of bond-free DNA languages. Theoret. Comput. Sci. 334, 131–159 (2005)
Kari, L., Sosík, P.: Aspects of shuffle and deletion on trajectories. Theoret. Comput. Sci. 332(1–3), 47–61 (2005)
Knuth, D.E.: Seminumerical Algorithms, The Art of Computer Programming, 3rd edn. Addison-Wesley, Reading (1998)
Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Ann. Math. 74(3), 437–455 (1961)
Ogden, W.F., Riddle, W.E., Round, W.C.: Complexity of expressions allowing concurrency. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL 1978, pp. 185–194. ACM NY, USA (1978)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Eremondi, J., Ibarra, O.H., McQuillan, I. (2015). On the Complexity and Decidability of Some Problems Involving Shuffle. In: Shallit, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2015. Lecture Notes in Computer Science(), vol 9118. Springer, Cham. https://doi.org/10.1007/978-3-319-19225-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-19225-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19224-6
Online ISBN: 978-3-319-19225-3
eBook Packages: Computer ScienceComputer Science (R0)