Skip to main content

A Label-Aided Filter Method for Multi-objective Feature Selection in EEG Classification for BCI

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9094))

Included in the following conference series:

  • 2046 Accesses

Abstract

This paper proposes and evaluates a filter approach for evolutionary multi-objective feature selection in classification problems with a large number of features. Such classification problems frequently appear in many bioinformatics applications where the number of patterns is smaller than the number of features and thus the curse of dimensionality problem exists. The main contribution of this paper is proposing a set of label-aided utility functions that allows the effective search of the most adequate subset of features through an evolutionary multi-objective optimization scheme. The experimental results have been obtained in a brain-computer interface (BCI) classification task based on LDA classifiers, where the properties of multi-resolution analysis (MRA) for signal analysis in temporal and spectral domains have been used to extract the features from EEG signals. The results from the proposed filter method demonstrate some advantages such as less time consumption and better generalization capabilities with respect to some wrapper-based multi-objective feature selection alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  2. Sima, C., Dougherty, E.: What should be expected from feature selection in small-sample settings. Bioinformatics 22, 2430–2436 (2006)

    Article  Google Scholar 

  3. Acır, N., Güzeliş, C.: An application of support vector machine in bioinformatics: automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 462–471. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 4 (2007)

    Google Scholar 

  5. Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(3), 252–264 (1991)

    Article  Google Scholar 

  6. Asensio-Cubero, J., Gan, J.Q. Palaniappan, R.: Multiresolution analysis over simple graphs for brain computer interfaces. Journal of Neural Engineering, 10(4) (2013). doi:10.1088/1741-2560/10/4/046014

  7. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (2006)

    Google Scholar 

  8. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  9. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 34, 483–519 (2013)

    Article  Google Scholar 

  10. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist Non-dominated Sorting Genetic Algorithms for multi-objective optimisation: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Handl, J., Knowles, J.: Feature selection in unsupervised learning via multi-objective optimization. Intl. Journal of Computational Intelligence Research 2(3), 217–238 (2006)

    Article  MathSciNet  Google Scholar 

  12. Emmanouilidis, C., Hunter, A., MacIntyre, J.: A multi-objective evolutionary setting for feature selection and a commonality-based crossover operator. In: Proc. of the 2000 Congress on Evolutionary Computation, pp. 309–316. IEEE Press, New York (2000)

    Google Scholar 

  13. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition. International Journal of Pattern Recognition and Artificial Intelligence 17(6), 903–929 (2003)

    Article  Google Scholar 

  14. Kim, Y., Street, W.N., Menczer, F.: Evolutionary model selection in unsupervised learning. Intelligent Data Analysis 6(6), 531–556 (2002)

    MATH  Google Scholar 

  15. Morita, M., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition. In: Proc. of the Seventh International Conference on Document Analysis and Recognition, pp. 666–671. IEEE Press, New York (2003)

    Google Scholar 

  16. Gan, H., Sang, N., Huang, R., Tong, X., Dan, Z.: Using clustering analysis to improve semi-supervised classification. Neurocomputing 101, 290–298 (2013)

    Article  Google Scholar 

  17. Basu, S., Banerjee, A., Rooney, R.J.: Semi-supervised clustering by seeding. In: Proc. of the 19th International Conference on Machine Learning, pp. 11–18 (2003)

    Google Scholar 

  18. Dash, M., Liu, H.: Consistency-based search in feature selection. Artificial Intelligence 151, 155–176 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychological Meas. 20, 37–46 (1960)

    Article  Google Scholar 

  20. Ortega, J., Asensio-Cubero, J., Gan, J.Q., Ortiz, A.: Evolutionary multiobjective feature selection in multiresolution analysis for BCI. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015, Part I. LNCS, vol. 9043, pp. 347–359. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Martín-Smith, P., Ortega, J., Asensio-Cubero, J., Gan, J.Q., Ortiz, A. (2015). A Label-Aided Filter Method for Multi-objective Feature Selection in EEG Classification for BCI. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9094. Springer, Cham. https://doi.org/10.1007/978-3-319-19258-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19258-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19257-4

  • Online ISBN: 978-3-319-19258-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics