Skip to main content

CO\(^2\)RBFN-CS: First Approach Introducing Cost-Sensitivity in the Cooperative-Competitive RBFN Design

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9094))

Included in the following conference series:

  • 1953 Accesses

Abstract

The interest in dealing with imbalanced datasets has grown in the last years, since they represent many real world scenarios. Different methods that address imbalance problems can be classified into three categories: data sampling, algorithmic modification and cost-sensitive learning. The fundamentals of the last methodology is to assign higher costs to wrong classification classes with the aim of reducing higher cost errors.

In this paper, CO\(^2\)RBFN-CS, a cooperative-competitive Radial Basis Function Network algorithm that implements cost-sensitivity is presented. Specifically, a cost parameter is introduced in the training stage of the algorithm. This parameter modifies the learning rate of the weights taking into account the right (or wrong) classification of the instance, the type of class (majority or minority) and the imbalance ratio of the data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. J. of Mult.-Valued Logic & Soft Computing 17, 255–287 (2011)

    Google Scholar 

  2. Alexandridis, A., Chondrodima, E., Sarimveis, H.: Radial basis function network training using a nonsymmetric partition of the input space and particle swarm optimization. IEEE Transactions on Neural Networks and Learning Systems 24(2), 219–230 (2013)

    Article  Google Scholar 

  3. Barandela, R., Sánchez, J.S., García, V., Rangel, E.: Strategies for learning in class imbalance problems. Pattern Recognition 36(3), 849–851 (2003)

    Article  Google Scholar 

  4. Bradford, J.P., Kunz, C., Kohavi, R., Brunk, C., Brodley, C.E.: Pruning decision trees with misclassification costs. In: Proceedings of the the 10th European Conference on Machine Learning (ECML 1998), pp. 131–136 (1998)

    Google Scholar 

  5. Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Systems 2, 321–355 (1988)

    MATH  MathSciNet  Google Scholar 

  6. Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Transactions on System, Man, and Cybernetics, B 35(5), 928–947 (2005)

    Article  Google Scholar 

  7. Chawla, N.V., Japkowicz, N., Kolcz, A.: Special issue on learning from imbalanced data sets. SIGKDD Explorations Newsletter 6(1), 1–6 (2004)

    Article  Google Scholar 

  8. Chen, H., Kong, L., Leng, W.: Numerical solution of pdes via integrated radial basis function networks with adaptive training algorithm. Applied Soft Computing 11, 856–860 (2011)

    Google Scholar 

  9. Domingos, P.: Metacost: a general method for making classifiers cost sensitive. In: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, pp. 155–164 (1999)

    Google Scholar 

  10. Du, H., Zhang, N.: Time series prediction using evolving radial basis function networks with new enconding scheme. Neurocomputing 71, 1388–1400 (2008)

    Article  Google Scholar 

  11. Fernández, A., del Jesus, M.J., Herrera, F.: Hierarchical fuzzy rule based classification system with genetic rule selection for imbalanced data-set. International Journal of Approximate Reasoning 50, 561–577 (2009)

    Article  MATH  Google Scholar 

  12. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32, 675–701 (1937)

    Article  Google Scholar 

  13. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180, 2044–2064 (2010)

    Article  Google Scholar 

  14. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  15. Harpham, C., Dawson, C.W., Brown, M.R.: A review of genetic algorithms applied to training radial basis function networks. Neural Computing and Applications 13, 193–201 (2004)

    Article  Google Scholar 

  16. He, Z.M.: Cost-sensitive steganalysis with stochastic sensitvity and cost sensitive training error. Proceedings of the International Conference on Machine Learning and Cybernetics 1, 349–354 (2012)

    Google Scholar 

  17. Hochberg, Y.: A sharper bonferroni procedure for multiple tests of significance. Biometrika 75(4), 800–802 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. C. X. Ling, Q. Yang, J. Wang, and S. Zhang. Decision trees with minimal costs. In: Proceedings of the 21st International Conference on Machine Learning (ICML 2004), vol. 69, pp. 544–551 (2004)

    Google Scholar 

  19. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classiffcation with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences 250, 113–141 (2013)

    Article  Google Scholar 

  20. Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)

    Article  Google Scholar 

  21. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Computation 1, 281–294 (1989)

    Article  Google Scholar 

  22. Niu, H.L., Wang, J.: Financial time series prediction by a random data-time effective RBF neural network. Soft Computing 18(3), 497–508 (2014)

    Article  Google Scholar 

  23. Pérez-Godoy, M.D., Fernández, A., Rivera, A.J., del Jesus, M.J.: Analysis of an evolutionary RBFN design algorithm, CO\(^2\)RBFN, for imbalanced data sets. Pattern Recognition Letters 31(15), 2375–2388 (2010)

    Article  Google Scholar 

  24. Pérez-Godoy, M.D., Rivera, A.J., Carmona, C.J., del Jesus, M.J.: Training algorithms for radial basis function networks to tackle learning processes with imbalanced data-sets. Applied Soft Computing 25, 26–39 (2014)

    Article  Google Scholar 

  25. Pérez-Godoy, M.D., Rivera, A.J., del Jesus, M.J., Berlanga, F.J.: CO\(^2\)RBFN: An evolutionary cooperative-competitive RBFN design algorithm for classification problems. Soft Computing 14(9), 953–971 (2010)

    Article  Google Scholar 

  26. Qasem, S.N., Shamsuddin, S.M.: Memetic elitist pareto differential evolution algorithm based radial basis function networks for classification problems. Applied Soft Computing 11(8), 5565–5581 (2011)

    Article  Google Scholar 

  27. Rojas, I., Valenzuela, O., Prieto, A.: Statistical analysis of the main parameters in the definition of radial basis function networks. LNCS 1240, 882–891 (1997)

    Google Scholar 

  28. Tang, Y., Zhang, Y.-Q., Chawla, N.V., Krasser, S.: Svms modeling for highly imbalanced classification. IEEE Transactions on Systems Man and Cybernetics. PART B. Cybernetics 39(1), 281–288 (2009)

    Google Scholar 

  29. Ting, K.M.: An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering 14(3), 659–665 (2002)

    Article  Google Scholar 

  30. Turney, P.D.: Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research 2, 369–409 (1995)

    Google Scholar 

  31. Veropoulos, K., Cristianini, N., Campbell, C.: Controlling the sensitivity of support vector machines. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 55–60 (1999)

    Google Scholar 

  32. Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Transactions on Neural Networks 7(4), 869–880 (1996)

    Article  Google Scholar 

  33. Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, madaline and backpropagation. Proceedings of the IEEE 78(9), 1415–1442 (1990)

    Article  Google Scholar 

  34. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  Google Scholar 

  35. Zadrozny, B., Langford, J., Abe, N.: Costsensitive learning by costproportionateexample weighting. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003), pp. 435–442 (2003)

    Google Scholar 

  36. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge Data Engineering 18(1), 63–77 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Dolores Pérez-Godoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pérez-Godoy, M.D., Rivera, A.J., Charte, F., del Jesus, M.J. (2015). CO\(^2\)RBFN-CS: First Approach Introducing Cost-Sensitivity in the Cooperative-Competitive RBFN Design. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9094. Springer, Cham. https://doi.org/10.1007/978-3-319-19258-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19258-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19257-4

  • Online ISBN: 978-3-319-19258-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics