Skip to main content

BSO-FS: Bee Swarm Optimization for Feature Selection in Classification

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9094))

Included in the following conference series:

Abstract

Feature selection is an important data-preprocessing step that often precedes the classification task. Because of large amount of features in real world applications, feature selection is considered as a hard optimization problem. For such problems, metaheuristics have been shown to be a very promising solving approach. In this work, we propose to use Bee Swarm Optimization (BSO) for feature selection. The proposed algorithm, BSO-FS, is based on the wrapper approach that uses BSO for the generation of feature subsets, and a classifier algorithm to evaluate the solutions. BSO-FS is tested on well-known datasets and its performances are compared with those of recently published methods. Obtained results show that for the majority of datasets, BSO-FS selects efficiently relevant features while improving the classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clarke, B., Fokoue, E., Zhang, H.H.: Principles and theory for data mining and machine learning. Springer Science Business Media (2009)

    Google Scholar 

  2. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann (2005)

    Google Scholar 

  3. Liu, H., Motoda, H. (eds.).: Computational methods of feature selection. CRC Press (2007)

    Google Scholar 

  4. Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature Selection: An Ever Evolving Frontier in Data Mining. FSDM 10, 4–13 (2010)

    Google Scholar 

  5. Von Frisch, K., Lindauer, M.: The “Language” and Orientation of the Honey Bee. Annual Review of Entomology 1, 45–58 (1956, 1973)

    Google Scholar 

  6. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: A methodology for feature selection using multiobjective genetic algorithms for handwritten digit string recognition. International Journal of Pattern Recognition and Artificial Intelligence 17(06), 903–929 (2003)

    Article  Google Scholar 

  7. Inza, I., Merino, M., Larraaga, P., Quiroga, J., Sierra, B., Girala, M.: Feature subset selection by genetic algorithms and estimation of distribution algorithms: a case study in the survival of cirrhotic patients treated with TIPS. Artificial Intelligence in Medicine 23(2), 187–205 (2001)

    Article  Google Scholar 

  8. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. In: Feature Extraction, Construction and Selection, pp. 117–136. Springer, US (1998)

    Google Scholar 

  9. Huang, J., Cai, Y., Xu, X.: A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recognition Letters 28(13), 1825–1844 (2007)

    Article  Google Scholar 

  10. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms. Applied Soft Computing 18, 261–276 (2014)

    Article  Google Scholar 

  11. Yusta, S.C.: Different metaheuristic strategies to solve the feature selection problem. Pattern Recognition Letters 30(5), 525–534 (2009)

    Article  Google Scholar 

  12. Drias, H., Sadeg, S., Yahi, S.: Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artificial Intelligence Review 31(1–4), 61–85 (2009)

    Article  Google Scholar 

  14. Seeley, T.D.: Honeybee ecology: a study of adaptation in social life. Princeton University Press (2014)

    Google Scholar 

  15. Sadeg, S., Drias, H.: A selective approach to parallelise Bees Swarm Optimisation metaheuristic: application to MAX-W-SAT. International Journal of Innovative Computing and Applications 1(2), 146–158 (2007)

    Article  Google Scholar 

  16. Kabir, M.M., Shahjahan, M., Murase, K.: A new hybrid ant colony optimization algorithm for feature selection. Expert Systems with Applications 39(3), 3747–3763 (2012)

    Article  Google Scholar 

  17. Robbins, K.R., Zhang, W., Bertrand, J.K., Rekaya, R.: The ant colony algorithm for feature selection in high-dimension gene expression data for disease classification. Mathematical Medicine and Biology 24(4), 413–426 (2007). ISO 690

    Article  MATH  Google Scholar 

  18. Chuang, L.Y., Tsai, S.W., Yang, C.H.: Improved binary particle swarm optimization using catfish effect for feature selection. Expert Systems with Applications 38(10), 12699–12707 (2011)

    Article  Google Scholar 

  19. Schiezaro, M., Pedrini, H.: Data feature selection based on Artificial Bee Colony algorithm. EURASIP Journal on Image and Video Processing 2013(1), 1–8 (2013)

    Article  Google Scholar 

  20. Belkebir, R., Guessoum, A.: A hybrid BSO-Chi2-SVM approach to Arabic text categorization. In: 2013 ACS International Conference on Computer Systems and Applications (AICCSA), pp. 1–7. IEEE, May 2013

    Google Scholar 

  21. Drias, H., Mosteghanemi, H.: Bees swarm optimization based approach for web information retrieval. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 1, pp. 6–13. IEEE, August 2010

    Google Scholar 

  22. Djeffal, M., Drias, H.: Multilevel bee swarm optimization for large satisfiability problem instances. In: Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao, X. (eds.) IDEAL 2013. LNCS, vol. 8206, pp. 594–602. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Djenouri, Y., Drias, H., Chemchem, A.: A hybrid bees swarm optimization and tabu search algorithm for association rule mining. In: 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 120–125. IEEE, August 2013

    Google Scholar 

  24. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artificial intelligence 97(1), 245–271 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Koller, D., Sahami, M.: Toward optimal feature selection (1996)

    Google Scholar 

  26. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  27. Alsukker, A., Khushaba, R., Al-Ani, A., Al-Jumaily, A.A.: Enhanced feature selection algorithm using ant colony optimization and fuzzy memberships. IASTED (2008)

    Google Scholar 

  28. Ke, L., Feng, Z., Ren, Z.: An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognition Letters 29(9), 1351–1357 (2008)

    Article  Google Scholar 

  29. Ke, L., Feng, Z., Ren, Z.: An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognition Letters 29(9), 1351–1357 (2008)

    Article  Google Scholar 

  30. Dash, M., Liu, H.: Feature selection for classification. Intelligent data analysis 1(3), 131–156 (1997)

    Article  Google Scholar 

  31. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new algorithm. In: AAAI, vol. 2, pp. 129–134, July 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souhila Sadeg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sadeg, S., Hamdad, L., Benatchba, K., Habbas, Z. (2015). BSO-FS: Bee Swarm Optimization for Feature Selection in Classification. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9094. Springer, Cham. https://doi.org/10.1007/978-3-319-19258-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19258-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19257-4

  • Online ISBN: 978-3-319-19258-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics