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Abstract. Modern data-intensive software systems manipulate an
increasing amount of data in order to support users in various execu-
tion contexts. Maintaining and evolving activities of such systems rely
on an accurate documentation of their behavior which is often missing
or outdated. Unfortunately, standard program analysis techniques are
not always suitable for extracting the behavior of data-intensive sys-
tems which rely on more and more dynamic data access mechanisms
which mainly consist in run-time interactions with a database. This paper
proposes a framework to extract behavioral models from data-intensive
program executions. The framework makes use of dynamic analysis tech-
niques to capture and analyze SQL execution traces. It applies cluster-
ing techniques to identify data manipulation functions from such traces.
Process mining techniques are then used to synthesize behavioral models.

Keywords: Data-manipulation behavior recovery · Data-oriented process
mining · Data-manipulation functions

1 Introduction

Data-intensive systems typically consists of a set of applications performing fre-
quent and continuous interactions with a database. Maintaining and evolving
data-intensive systems can be performed only after the system has been suffi-
ciently understood, in terms of structure and behavior. In particular, it is nec-
essary to recover missing documentation (models) about the data manipulation
behavior of the applications, by analyzing their interactions with the database.
In modern systems, such interactions usually rely on dynamic SQL, where auto-
matically generated SQL queries are sent to the database server. In this context,
our paper aims at answering the following research question: To what extent can
we extract the data-manipulation behavior of a data-intensive system starting
from its traces of database access?
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The literature includes various static and dynamic program analysis techni-
ques to extract behavioral models from traditional software systems. Existing
static analysis techniques [1–5], analyzing program source code, typically fail in
producing complete behavioral models in presence of dynamic SQL. They can-
not capture the dynamic aspects of the program-database interactions, influenced
by context-dependent factors, user inputs and results of preceding data accesses.
Existing dynamic analysis techniques [6], analyzing program executions, have been
designed for other purposes than data manipulation behavior extraction. Several
authors have considered the analysis of SQL execution traces in support to data
reverse engineering, service identification or performance monitoring [7–11]. Such
techniques look very promising for recovering an approximation of data-intensive
application behavior.

In this paper, we propose a framework to recover the data manipulation
behavior of programs, starting from SQL execution traces. Our approach uses
clustering to group the SQL queries that implement the same high-level data
manipulation function, i.e., that are syntactically equal but with different input
or output values. We then adopt classical process mining techniques [12] to
recover data manipulation processes. Our approach operates at the level of a
feature, i.e., a software functionality as it can be perceived by the user. A feature
corresponds to a process enabling different instances, i.e., traces, each performing
possibly different interactions with a database.

This paper is structured as follows. Section 2 presents the basic elements of
our framework in terms of artifacts and components and how to integrate those
elements to recover the data manipulation behavior of a data-intensive system.
Section 3 presents a validation based on a tool integrated with current practice
technologies and a set of experiments showing completeness and noise of mined
processes depending on the input log coverage. Section 4 discusses related work
and Sect. 5 ends the paper showing possible future directions.

Motivating Example. We consider an e-commerce web store for selling prod-
ucts in a world-wide area. The system provides a set of features requiring frequent
and continuous interactions with the database by means of executing SQL state-
ments. For instance, the feature for retrieving products (view products) accesses
information about categories, manufacturers and detailed product information.
Which data are accessed at runtime depends on dynamic aspects of the system.
For example, given that a certain feature instance retrieves the categories of
products before accessing product information we can derive that it corresponds
to a category-driven search. If a certain instance accesses manufacturer informa-
tion before product information we analogously derive that it corresponds to a
manufacturer-driven search. By capturing and mining the database interactions
of multiple feature instances, it is possible to recover the actual data manipula-
tion behavior of the feature, e.g., a process model with a variability point among
two search criteria.

2 Data Manipulation Behavior Recovery

Our framework supports the extraction of the data manipulation behavior of
programs by exploiting several artifacts (see Fig. 1). We assume the existence
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Fig. 1. Basics models: artifacts and components

of a logical and possibly of a conceptual schema with a mapping between them.
The conceptual schema is a platform-independent specification of the application
domain concepts, their attributes and relationships. The logical schema contains
objects (tables, columns and foreign keys) implementing abstract concepts over
which queries are defined. The conceptual schema and the mapping to the logi-
cal schema can be either available, or they can be obtained via database reverse
engineering techniques [13,14]. SQL statements defined over the logical schema
materialize the interactions occurring between multiple executions (traces) of a
feature and the underlying database. Once the source code related to a feature
has been identified [15], different techniques can capture SQL execution traces.
Those techniques, compared in [8], range from using the DBMS log to sophis-
ticated source code transformation. Among others, the approaches presented
in [16,17] recover the link between SQL executions and source code locations
through automated program instrumentation, while [18] makes use of tracing
aspects to capture SQL execution traces without source code alteration. Once
a sequence of queries is captured, it is necessary to identify the different traces,
each corresponding to a feature instance. This problem has been tackled in the
literature of specification mining by analyzing value-based dependencies of meth-
ods calls [19].

Our approach is independent from the adopted trace capturing techniques.
For each feature, it requires as minimal input a set of execution traces, each trace
consisting of a sequence of SQL queries. A query parsing component assignees to
each query a set of data-oriented properties each describing its data-manipulation
behavior. A query filtering component removes queries that do not refer to
concepts and relationships of the input conceptual schema. A query cluster-
ing component clusters together queries that have the same set of properties
thus implementing the same data-manipulation function. Consequently, a cluster
labeling component identifies the signature representing the data-manipulation
function (i.e., cluster) in terms of a label and a set of Input/Output (I/O) para-
meters. The traces abstraction component replaces traces of queries with the
corresponding signatures and the process extraction component generates the
data-oriented process corresponding to the input traces of a feature.

Noteworthy, our approach is applicable to any system for which a query
interception phase is possible. It could, for instance, be applied to legacy Cobol
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systems, Java systems with or without Object-Relational-Mapping technologies,
or web applications written in PHP.

Query Parsing (1). We characterize SQL queries according to (1) the infor-
mation they recover or modify and (2) the related selection criteria. To this end,
for each query we record a set of data-oriented properties according to the query
type. For a select query we record a property with the select clause while for
delete, update, replace or insert queries we record a property with the name of
the table. If the query is either update, replace or insert we also record a property
with the set clause and all its attributes. Finally for all query types but the insert
we add a property for the where clauses along with their attributes. By means
of these properties we ignore the actual values taken as input and produced as
output by each query. Figure 2 shows three SQL traces along with their corre-
sponding properties. These queries are created starting from the logical schema
represented in Fig. 3. Among others query q1 is a select query over attribute
Password of Customer table (property p1) and it contains a where clause with an
equality condition over Id attribute (p2); query q2 is a select query over attributes

Trace 1:

q1: SELECT Customer.Password FROM Customer WHERE Customer.Id = ’Mark27 ’; [p1 ,p2]
q2: SELECT Category.Id , Category.Image FROM Category; -> [p3]
q3: SELECT Product.Id, Product.Price FROM Product , PCategory WHERE Product.Id=PCategory.Product_Id AND

PCategory.Category_Id =’1’; -> [p4,p5,p6]
q4: SELECT PLang.Description FROM PLang , Language WHERE PLang.Language_Id=Language.Code AND PLang.Product_Id

=’1A23 ’ AND Language.Name=’Italian ’; -> [p7,p8 ,p9,p10]
q5: SELECT SpecialProduct.NewPrice FROM SpecialProduct ,Product WHERE SpecialProduct.Product_Id=Product.Id

AND Product.Id=’1A23 ’; -> [p11 ,p12 ,p13]
q6: SELECT Manufacturer.Name FROM Manufacturer ,Product WHERE Manufacturer.Id=Product.Manufacturer_Id AND

Product.Id=’1A23 ’; -> [p14 ,p15 ,p13]
q7: SELECT PLang.Description FROM PLang , Language WHERE PLang.Language_Id=Language.Code AND PLang.Product_Id

=’1F32 ’ AND Language.Name=’Italian ’; -> [p7,p8 ,p9,p10]
q8: SELECT SpecialProduct.NewPrice FROM SpecialProduct ,Product WHERE SpecialProduct.Product_Id=Product.Id

AND Product.Id=’1F32 ’; -> [p11 ,p12 ,p13]
q9: SELECT Manufacturer.Name FROM Manufacturer ,Product WHERE Manufacturer.Id=Product.Manufacturer_Id AND

Product.Id=’1F32 ’; -> [p14 ,p15 ,p13]
q10: INSERT INTO Log(IdEvent ,Event ,Date ,Time) VALUES (’021’,’PrAcc1A23 -1F32 ’,’2013-02-22’,’12:21:00’); -> [

p16]

Trace 2:

q11: SELECT Customer.Password FROM Customer WHERE Customer.Id = ’JennyMa ’; [p1,p2]
q12: SELECT Category.Id, Category.Image FROM Category; -> [p3]
q13: SELECT Product.Id , Product.Price FROM Product , PCategory WHERE Product.Id=PCategory.Product_Id AND

PCategory.Category_Id =’2’; -> [p4,p5,p6]

Trace 3:

q14: SELECT Customer.Password FROM Customer WHERE Customer.Id = ’DanWer ’; [p1,p2]
q15: SELECT Manufacturer.Id, Manufacturer.Name FROM Manufacturer -> [p17]
q16: SELECT Product.Id , Product.Price FROM Product WHERE Product.Manufacturer_Id=’AppleNamur01 ’ -> [p4,p18]
q17: SELECT PLang.Description FROM PLang , Language WHERE PLang.Language_Id=Language.Code AND PLang.

Product_Id =’2D11 ’ AND Language.Name=’Italian ’; -> [p7,p8,p9 ,p10]
q18: SELECT SpecialProduct.NewPrice FROM SpecialProduct ,Product WHERE SpecialProduct.Product_Id=Product.Id

AND Product.Id=’2D11 ’; -> [p11 ,p12 ,p13]
q19: SELECT Manufacturer.Name FROM Manufacturer ,Product WHERE Manufacturer.Id=Product.Manufacturer_Id AND

Product.Id=’2D11 ’; -> [p14 ,p15 ,p13]
q20: INSERT INTO Log(IdEvent ,Event ,Date ,Time) VALUES (’022’,’PrAcc2D11 ’,’2013-02-28’,’14:00:03’); -> [p16]

SQL-statements properties:

p1=" SELECT Customer.Password", p2=" Customer.Id.EQ_VALUE", p3=" SELECT Category.Id Category.Image",
p4=" SELECT Product.Id Product.Price", p5=" Product.Id=PCategory.Product_Id",
p6=" PCategory.Category_Id.EQ_VALUE", p7=" SELECT PLang.Description", p8="PLang.Language_Id=Language.Code",
p9="PLang.Product_Id.EQ_VALUE", p10=" Language.Name.EQ_VALUE", p11=" SELECT SpecialProduct.NewPrice",
p12=" SpecialProduct.Product_Id=Product.Id", p13=" Product.Id.EQ_VALUE", p14=" SELECT Manufacturer.Name",
p15=" Product.Manufacturer_Id=Manufacturer .Id", p16=" INSERT INTO Log",
p17=" SELECT Manufacturer.Id Manufacturer.Name", p18=" Product.Manufacturer_Id.EQ_VALUE"

Fig. 2. Web Store: Traces of SQL statements with data-oriented properties
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Fig. 3. Web-store case study: logical schema.

Id and Image of Category and it corresponds to property p3; query q3 is a select
over attributes Id and Price of Product (property p4), it contains two where
clauses, i.e., a natural join between Product.Id and PCategory.Product Id (p5)
and an equality condition over PCategory.Category Id attribute (p6).

Fig. 4. Web-store case study: conceptual schema.

Query Filtering (2). We remove from the input traces the queries that do
not express end-user concepts, i.e., the ones referring to database system tables
or log tables appearing only in the logical schema. In our example we remove
q10 and q20 accessing table Log without a counterpart in the conceptual schema
(see Figs. 3 and 4).

Query Clustering (3). Starting from the traces of SQL statements we apply
the Formal Concepts Analysis (FCA) [20] in order to cluster together queries



90 M. Mori et al.

having the same data-oriented properties. FCA provides the definition for formal
context C = (O,A,R) where O is the set of objects, A is the set of attributes
and R ⊆ O × A is the relation between objects and attributes. In our case
objects are SQL queries while attributes are their data-oriented properties. For
the formal context, a formal concept c is defined as a pair (Oi, Ai) where Oi ⊆ O
and Ai ⊆ A and every object in Oi has each attribute in Ai. In our case we assign
each query to the concept with the same set of properties thus dividing queries in
disjoint sets each performing different operations over the database. We report in
Table 1 the clusters obtained from queries in Fig. 2. It is worth noticing that FCA
is much more powerful than how we used it; indeed we did not consider objects
(queries) having only subsets of equal properties. Nevertheless, we automatize
the clustering of queries having the same set of data-oriented properties.

Table 1. Web Store: Clusters of SQL queries.

C1 C2 C3 C4 C5 C6 C7 C8

{q1, q11, q14} {q2, q12} {q3, q13} {q4, q7, q17} {q5, q8, q18} {q6, q9, q19} {q15} {q16}
{p1, p2} {p3} {p4, p5, p6} {p7, p8, p9, p10} {p11, p12, p13} {p13, p14, p15} {p17} {p4, p18}

Cluster Labeling (4). We identify the data manipulation function imple-
mented by each cluster in term of a label and a set of I/O parameters. First,
labels are obtained by analyzing the fragment of conceptual schema which cor-
responds to the logical subschema accessed by the cluster queries. In case a
conceptual schema is not available it is sufficient to reverse engineer the logical
schema by simply adopting a data-modeling tool like DB-MAIN1; thus given
that the logical schema contains meaningful names it is still possible to obtain
significant labels. Second, I/O parameters are created based on the data-oriented
properties belonging to each cluster.

For determining the labels we adopt the same naming convention proposed
in [21] to associate conceptual level operations to SQL query code. We extract
the portion of conceptual schema accessed by the queries of a cluster and we
apply a different labeling strategy according to the query types. Concerning
the query types insert, replace, delete and update, we create the label of the
data-manipulation functions starting from the unique entity E of the conceptual
schema accessed by each of these query types, i.e., InsertIntoE, ReplaceIntoE,
DeleteFromE and UpdateE respectively. In case of a select query we distinguish
four cases according to the portion of the conceptual schema involved in the
cluster queries (refer to Table 1 and Fig. 4 for the given examples):

a. One entity E. In this case we proposed two possible mapping names based on
the presence of an equality condition over the primary key of E. If such con-
dition is present, we map the cluster with the label getEById. Conversely, we
simply map the cluster with the label getAllE. In our example we translate

1 DB-MAIN official website, http://www.db-main.be.

http://www.db-main.be
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cluster C1 to getCustomerById since queries in C1 retrieve information con-
tained within entity Customer by taking as input its primary key. Concerning
cluster C2, since its queries retrieve all tuples of entity Category without con-
sidering any condition over its primary key, it translates to getAllCategory.

b. Two entities E1, E2 related by a many-to-many relationship R. In this case,
the adopted label is getAllE1OfE2V iaR providing that the queries give as
result the attributes of all the instances of E1 associated with a given instance
of E2 through R. Concerning our example we translate clusters C3 to getAll-
ProductOfCategoryViaPCategory since it extracts all the products of a certain
category and we translate C4 to getAllLanguageOfProductViaPLang provided
that it extracts all language descriptions of a product.

c. Two entities E1, E2 related by a one-to-one relationship R. In this case, we
map the cluster with the label getE1OfE2V iaR provided that the queries
retrieve the instance of E1 associated to a certain input instance of E2. In
the web-store example, we map cluster C5 to label getSpecialProductOfPro-
ductViaSProd in order to extract the occurrence of SpecialProduct related to
a certain product via the one-to-one relationship SProd.

d. Two entities E1, E2 related by a one-to-many relationship R. In this case, we
distinguish two cases. If the queries return the instance of E1 that participates
to the relationship R with multiplicity N, we translate the query with the func-
tion getE1OfE2V iaR. Conversely, if the query returns the set of instances
of E2 that participate to R with multiplicity 1 we translate the query with
the label getAllE2OfE1V iaR. In our web-store example we translate cluster
C6 to getManufacturerOfProductViaPManufact since it retrieves the single
occurrence of Manufacturer participating to the relationship PManufact
with Product. We translate cluster C8 to getAllProductOfManufacturerVi-
aPManufact since it retrieves the multiple occurrences of Product related to
Manufacturer via PManufact.

As far as I/O parameters are concerned, input parameters are the attributes
involved in equality or inequality conditions that appear in the data-oriented
properties of the queries, while output parameters are the set of attributes
appearing within the select query property. Table 2 shows labels and I/O para-
meters for the clusters of the Web Store example.

It is worth noticing that in our approach it is enough to translate just one
arbitrary query within the same cluster and to evaluate its input and output
parameters; indeed all queries belonging to a cluster have the same set of prop-
erties and they consequently access the same portion of the conceptual schema.
In defining signatures we have not considered the complete SQL grammar, e.g.,
we ignored group by operators that add more fined-grained information at the
attribute level and we ignored the where clauses without value-based equality
and inequality conditions. Nevertheless, we plan to adopt the latter for providing
more detailed definitions of the data manipulation functions.

Process Mining (5–6). We generate a process starting from a set of SQL
traces of a single feature. The traces abstraction phase replaces SQL traces with
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Table 2. Web Store: Clusters with data manipulation functions and I/O parameters.

Cluster Input Output

C1:getCustomerById {Id} {Password}
C2getAllCategory − {Id, Image}
C3:getAllProductOfCategoryViaPCategory {Category Id} {Id, Price}
C4:getAllLanguageOfProductViaPLang {Product Id,Name} {Description}
C5:getSpecialProductOfProductViaSProd {Product.Id} {NewPrice}
C6:getManufacturerOfProductViaPManufact {Product.Id} {Name}
C7:getAllManufacturer − {Id,Name}
C8:getAllProductOfManufacturerViaPManufact {Manufacturer Id} {Id, Price}

the corresponding traces of data manipulation functions. The process extraction
phase exploits a process mining algorithm to extract the feature behavior as a
sequence of function executions with sequential, parallel and choice operators.

In the following we show how to recover the data manipulation behavior of
the view products web-store feature starting from the traces of data manipula-
tion functions in Table 3 (obtained by replacing the queries in Fig. 2 with their
corresponding cluster labels of Table 2).

Table 3. Web Store: Traces of data manipulation functions

Trace 1 getCustomerById(C1) - getAllCategory(C2) -
getAllProductOfCategoryViaPCategory(C3) -

getAllLanguageOfProductViaPLang(C4) -
getSpecialProductOfProductViaSProd(C5) -

getManufacturerOfProductViaPManufact(C6) -
getAllLanguageOfProductViaPLang(C4) -

getSpecialProductOfProductViaSProd(C5) -
getManufacturerOfProductViaPManufact(C6)

Trace 2 getCustomerById(C1) - getAllCategory(C2) -
getAllProductOfCategoryViaPCategory(C3)

Trace 3 getCustomerById(C1) - getAllManufacturer(C7) -
getAllProductOfManufacturerViaPManufact(C8) -

getAllLanguageOfProductViaPLang(C4) -
getSpecialProductOfProductViaSProd(C5) -

getManufacturerOfProductViaPManufact(C6)

Trace 1 gets customer information (C1 ), it performs a category-driven search
of products by means of getting all the product categories (C2 ) and all the
products of a certain selected category (C3 ). For each retrieved product, three
functions are iterated: C4 retrieves product description, C5 extracts special
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product information and C6 extracts related manufacturer information. Trace 2
is different from Trace 1 because after function C3 no products are retrieved and
the process ends. If we apply a mining algorithm to Trace 1 and 2 we obtain a
process (Fig. 5(a)) which performs consecutively functions C1, C2 and C3 before
entering in the loop iterating C4, C5, and C6. The process ends after zero, one
or more iterations of the loop. Let us now assume to include into the process
Trace 3 which is equal to Trace 1 except that it searches products based on
their manufacturer (functions C7 and C8 ) instead of searching by category (C2
and C3 ). If we mine the process model by considering as input all the traces
(Fig. 5(b)), we end up with a new alternative branch: the customer can now
perform either a manufacturer-driven search or a category-driven search.

(a) (b)

Fig. 5. Web Store: process mined with (a) Trace 1 and 2 and (b) Trace 1, 2 and 3.

3 Validation

We validated our approach to data-manipulation behavior recovery by means of
(i) a tool integrated with current practice technologies and (ii) a set of exper-
iments showing the sensitivity of our technique in producing correct processes
depending on the traces log coverage.

3.1 Tool Support

The presented framework is implemented into an integrated tool which takes as
input a set of SQL traces (each representing an instance of the same feature),
the logical schema and optionally the conceptual schema and the conceptual-to-
logical schema mapping. The tool relies on a set of implemented and third-party
components. The former do not require any additional user inputs while the
latter may require the intervention of the designer. Among the implemented
components, a SQL parser extracts the data-oriented properties while a filter-
ing component filters out the ones referring to concepts and relationships not in
the input conceptual schema. A clustering component exploits the colibri-Java
Formal Concept Analysis tool2 to cluster queries according to their properties.
A labeling component generates data manipulation functions (i.e., cluster sig-
natures) while a traces abstraction component uses a Java library3 to create
standardized event logs.
2 http://code.google.com/p/colibri-java/.
3 http://www.xes-standard.org/openxes/start.

http://code.google.com/p/colibri-java/
http://www.xes-standard.org/openxes/start
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Starting from the event logs obtained with our implemented components, we
rely on the de-facto standard process mining tool (ProM tool4) to mine data
manipulation processes. ProM supports different process mining algorithms pro-
viding different trade-offs between completeness and noise [22,23] to be chosen
according to specific application needs. In our case, we chose as miner algorithm
the Integer Linear Programming (ILP) miner [24] since it is able to produce com-
plete process models (i.e., Petri Nets5 [25]) with a low level of noise6. Petri nets,
which results from ILP miner, are well-semantically defined models enabling dif-
ferent types of analysis among which a precise comparison of different model
instances. Once a process has been created, we exploit the ProM tool to export
the Petri Net as a PMNL7 file which can be given as input to a Petri Net edi-
tor tool, e.g., WoPeD8 allowing reading and editing operations. ProM provides
user-friendly graphical interfaces which support designers in easily loading stan-
dardized event logs, mining Petri Nets through ILP miner and exporting such
models for editing purposes enabled by WoPeD.

3.2 Experiment Inputs

For our experiments we collected a set of database access traces from an e-
restaurant web application developed by one of our bachelor students at our
university. This data-intensive system provides different features each accessing
a different portion of an underlying database to support the activities of taxi
drivers, restaurant owners and clients. Clients consult menu information (Men-
uInfo feature), information about special offers (DailySpecials feature) and gen-
eral information about restaurants (RestaurantInfo feature). They can reserve a
table for a meal (Reservation feature) and they can issue orders of meals with
two possible options, they either pick-up the meal at the restaurant or they
4 http://www.promtools.org/.
5 A Petri Net consists of a set of places, transitions, directed arcs and tokens. Tran-

sitions are represented with boxes and they indicate a certain event/task, places
are represented with circles, directed arcs link together transitions and places in a
bipartite manner, while tokens are represented as black dots which can move from
one place to another trough a transition.

6 In the literature of process mining two main metrics have been proposed to evaluate
how good is an algorithm in mining models conforming to an input set of traces.
The fitness measure expresses to what extent the model is able to produce the
input traces (completeness), while the appropriateness measure expresses to what
extent the model is able to represent the exact set of input traces (noise). Mining
a process model which is both complete and without noise is not always possible
unless we accept to obtain a model with too low level of abstraction (i.e., too specific)
which does not help user readability. Therefore, between completeness and noise we
give more importance to the first since we prefer to have a model which is able to
reproduce all the input traces (fitness=1) even if we introduce a certain level of noise
in it (appropriateness< 1).

7 http://www.pnml.org/ - (Petri Net Markup Language) is a proposal of an XML-
based interchange format for Petri nets (de-facto standard).

8 www.woped.org.

http://www.promtools.org/
http://www.pnml.org/
www.woped.org
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ask for a taxi service to deliver them the booked meal (IssueOrders feature).
Restaurant owners prepare the meal to be delivered to clients (RestaurantOrders
feature) while taxi drivers check delivery requests and they carry out the deliv-
ering process (TaxiDelivery feature). Among a wide set of implemented features
we chose a subset of features whose data manipulation processes covered execu-
tion patterns of different nature, e.g., sequential execution, cycles and decision
points. Since we played the role of the designer, we were able to select the
most interesting features i.e., DailySpecials, RestaurantInfo, MenuInfo, Reserva-
tion and IssueOrders. Consequently we collected the corresponding sequences of
SQL queries to give as input to the tool. The complete list of SQL statements
grouped by feature with different traces and extracted data-manipulation func-
tions are available at [26] along with conceptual and logical database schema
accessible through DB-MAIN. We assume that for each feature, its input set
of extracted traces corresponds to 100 % of coverage ratio of the process and it
contains exactly 6 different traces.

3.3 Experiments

Starting from the inputs data we conducted a set of experiments aiming at
answering the following research question: What is the quality of the processes
extracted through the integrated tool with a variable traces coverages, with respect
to their correct versions identified by the designer? In answering this research
question, we organized the experiment in two different phases: the start-up phase
creates for each feature the correct processes starting from its complete set of
traces (traces coverage = 100 %) with the support of the integrated tool and the
intervention of the designer; the core phase mines processes with a variable traces
coverage (≤ 100%) and it evaluates the quality of such processes with respect
to the correct ones previously identified with the support of ProM tool plug-ins.

Start-Up. For each feature we adopted the tool for creating the data-
manipulation processes with the complete set of traces. Consequently, since
these models could either contain noise or they could be not complete, we asked
the designer to derive a correct version from it. Designers have a deep know-
ledge and understanding of the processes and they can easily assess if a certain
process is correct or not. In our case, as designers, we adopted the WoPeD tool
for visualizing the processes as Petri Nets and to perform the possible required
modifications, i.e., addition/deletion of places and arcs. For instance, Fig. 6(a)
shows the feature DailySpecial mined with our technique while Fig. 6(b) shows
the version of the same feature as it has been corrected by the designer. The
correct version of this feature mainly consists of retrieving a certain set of restau-
rants (A), checking if they provide special dishes (B) and for each of those dishes
it retrieves the corresponding information (C ) along with the category to which
the dish belongs (D). The mined process contains all valid traces in the corrected
process but, as a consequence of the noise introduced by the mining algorithm, it
enables more traces than the correct one, e.g., the traces that retrieve a certain



96 M. Mori et al.

)b()a(

Fig. 6. DailySpecial: mined process (a) and process corrected by the designer (b).

dish (C ) without first retrieving the special dishes (B). These traces are not
considered admissible by the designer, who modifies the links among transitions
to disable the former traces and forcing the process to perform C only after B.

Core. Once the designer has determined the correct versions of the processes
of the input features, we performed a set of experiments in order to compare
them with the models produced by our approach with a different ratio of the
coverage of the input traces. We define Ptool as the Petri Net produced by our
approach, Pexp as the correct Petri Net and their corresponding set of valid traces
as T (Ptool) and T (Pexp). Then we define recall = |tp|

|tp+fn| = |T (Ptool)∩T (Pexp)|
|T (Pexp)| and

precision = |tp|
|tp+fp| = |T (Ptool)∩T (Pexp)|

|T (Ptool)| metrics where tp (true positive) is the
set of traces identified by our technique that are also included into the correct
model, fp (false positive) is the set of traces identified by our technique that are
not included into the correct model, while fn (false negative) is the set of traces
not identified by our technique but included into the correct model. Given that
the set of traces for a Petri Net could be infinite, we consider as an approximation
the minimum number of traces that covers the Petri Net where loops are iterated
at most once. Since ProM tool already provides a plug-in for evaluating precision
and recall between two Heuristic Net’s and to translate a Petri Net to a Heuristic
Net, we adopted both for evaluating mined models.

For each feature we have mined different processes starting from a variable set
of input traces. We have considered as input all the combinations of 1, ..., t traces
from the global set of t traces (in our experiments t=6). For each combination
of traces we have mined the corresponding process model and we have measured
precision and recall values of this model with respect to the correct one [26].
Finally, we have evaluated the average precision and recall obtained with all the
combinations of 1 trace from the t traces, all the combinations of 2 traces from
t traces, ..., and all the combinations of t traces from t traces. Then we repeated
the same set of experiments for all features.

Figure 7(a) and (b) show the averages recall and precision values obtained
for the input features. Figure 7(a) shows that for all processes the averages recall
measure increases if we consider a greater set of traces as input. In case we
consider all the traces, we have a recall equal to 1 meaning that all the traces
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(a)

(b)

Fig. 7. e-Restaurant case study: average recall measure (a) and average precision mea-
sure (b) of the mined process models depending on log coverage (1-trace logs, 2-trace
logs, ..., 6-trace logs).

within the correct model have been identified by our approach. On average,
if the number of traces decreases, the recall decreases as well. As shown in
Fig. 7(b), averages precision measure increases with the reductions of traces con-
sidered as input, meaning that on average with a lower number of traces the
noise introduced by our approach is lower than with a greater number of traces.
We claim that the trend of precision and recall averages do not depend on
the nature of processes, indeed they all follow the same behavior which depends
on the coverage of the input log.

3.4 Threats to Validity

Our technique extracts data-manipulation process models that may suffer of
two different types of noise. The first belongs to the adopted mining algorithm
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and it results in non-correct mined models having possibly additional traces. To
mitigate this noise we asked designers to perform a correction to the models
mined by our technique. In this way we were able to create models that were
100 % correct which have been exploited as input to evaluate the sensivitity of
our technique depending on the log coverage. The second type of noise belongs
to the input SQL statements that refer to technical implementation details not
relevant for the application logic. To mitigate this problem, we have introduced
a pre-processing phase to filter out queries that do not refer to a certain subset of
the conceptual schema as selected by the designer. Our technique may also have
threats to the scalability depending on the increasing input of SQL statements.
Indeed, even once the non-relevant queries have been pruned out, we could mine
a non-readable process due to the large space of extracted data-manipulation
functions. To mitigate this problem, we advice designers to prune iteratively the
conceptual schema until they obtain a readable process (by iteratively applying
our technique to the input set of queries).

Recall and precision values obtained for the different features depend on the
adopted mining algorithm. In [23] different mining algorithms have been com-
pared to identify the one that better fits the application needs. In our experi-
ments we exploited the ILP miner algorithm which is able to create models with
100 % of fitness (precision) and an acceptable level of appropriateness (recall)
with respect to the input set of traces. By adopting mining algorithms with dif-
ferent fitness and appropriateness, we would have obtained different precision
and recall values. Nevertheless, we claim that we expect to obtain similar trends
of precision and recall depending on the log coverage. Indeed, we expect that by
increasing the log coverage, we consequently increase the recall while lowering
the precision.

The e-restaurant system adopted in the experiments can be considered a good
representative for data-intensive systems i,.e., systems where most of the com-
plexity is hidden into its interactions with a database. Indeed, the e-restaurant
consists of numerous interactions with a database where data are the basis for
supporting the core business activities. Even though the experimented system is
of limited size and complexity, it sufficiently evidenced the capability of the pro-
posed approach in revealing heterogeneous data-manipulation processes in real
environments. With this aim, we have also mitigated the quality of the input
traces by analyzing features of different nature.

4 Related Work

In the literature different approaches use dynamic analysis of SQL queries with
a different goal than data manipulation behavior understanding. The approaches
presented in [7,8] analyze SQL statements in support to database reverse engi-
neering, e.g., detecting implicit schema constructs [8] and implicit foreign keys [7].
The approach presented by Di Penta et al. [9] identifies services from SQL traces.
The authors apply FCA techniques to name services I/O parameters thus support-
ing the migration towards Service Oriented Architecture. Debusmann et al. [10]
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present a dynamic analysis method for system performance monitoring, i.e., mea-
suring the response time of queries sent to a remote database server. Yang et al. [11]
support the recovery of a feature model by means of analyzing SQL traces. Al-
though the former approaches analyze (particular aspects of) the data access
behavior of running programs, none of the former approaches [7–11] is able to pro-
duce process models expressing such a behavior at a high abstraction level, as we
do in this paper.

Other approaches (e.g., [27,28]) extract business processes by exploiting/
combining static and dynamic analysis techniques, but they are not designed
to deal with dynamically generated SQL queries. The most related approach,
by Alalfi et al. [29], extracts scenario diagrams and UML security models by
considering runtime database interactions and the state of the PHP program.
These models are used for verifying security properties but they do not describe
the generic data manipulation behavior of the program, they only analyze web-
interface interactions. In addition they have not considered different possible
instances of a given scenario as we claim it is necessary to extract a complete
and meaningful model. Understanding processes starting from a set of execution
traces is at the core of process mining. This paper does not make any additional
contributions as far as process mining is concerned, but it is the first to apply
such techniques to analyze program-database interactions.

5 Conclusions and Future Work

Our paper presented a tool-supported approach to recover the data manipula-
tion behavior of data-intensive systems. The approach makes use of clustering,
conceptualization and process mining techniques starting from SQL execution
traces captured at runtime. We discussed how we exploited current practice tech-
nologies to implement our approach and we carried out a set of experiments to
assess the quality of the mined processes depending on the coverage of the input
traces. We assumed that designers were able to produce correct models based on
which we measured precision and recall metrics with respect to models produced
with our approach. Results showed that average precision and recall depend on
the log coverage almost independently from the extracted process. As for future
work we plan to enrich the input traces with multiple sources of information
like user input, source code and query results with the aim of identifying the
conditions that characterize decision points within process models.
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