Skip to main content

Smartphone-Based System for Sensorimotor Control Assessment, Monitoring, Improving and Training at Home

  • Conference paper
  • First Online:
Inclusive Smart Cities and e-Health (ICOST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9102))

Included in the following conference series:

  • 3103 Accesses

Abstract.

This article proposes an innovative Smartphone-based architecture designed to assess, monitor, improve and train sensorimotor abilities at home. This system comprises inertial sensors to measure orientations, calculation units to analyze sensorimotor control abilities, visual, auditory and somatosensory systems to provide biofeedback to the user, screen display and headphones to provide test and/or training exercises instructions, and wireless connection to transmit data. We present two mobile applications, namely “iBalance” and “iProprio”, to illustrate concrete realization of such architecture in the case of at-home autonomous assessment and rehabilitation programs for balance and proprioceptive abilities. Our findings suggest that the present architecture system, which does not involve dedicated and specialized equipment, but which is entirely embedded on a Smartphone, could be a suitable solution for Ambient Assisted Living technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Islam, N., Want, R.: Smartphones: Past, Present, and Future. IEEE Pervasive Comput. 4, 89–92 (2014)

    Article  Google Scholar 

  2. Gartner, Inc. (NYSE: IT), http://www.gartner.com/newsroom/id/2944819

  3. Krishna, S., Boren, S.A., Balas, E.A.: Healthcare via cell phones: a systematic review. Telemed. J. E-Health. 15(3), 231–240 (2009)

    Article  Google Scholar 

  4. Klasnja, P., Pratt, W.: Healthcare in the pocket: Mapping the space of mobile-phone health interventions. J. Biomed. Inform. 45(1), 184–198 (2012)

    Article  Google Scholar 

  5. Swan, M.: Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. Int. J. Environ. Res. Publ. Health. 6(2), 492–525 (2009)

    Article  Google Scholar 

  6. Arif, M., Bilal, M., Kattan, A., Ahamed, S.I.: Better Physical Activity Classification using Smartphone Acceleration Sensor. J. Med. Syst. 38(9), 1–10 (2014)

    Article  Google Scholar 

  7. Mitchell, E., Monaghan, D., O’Connor, N.E.: Classification of sporting activities using smartphone accelerometers. Sensors. 13(4), 5317–5337 (2013)

    Article  Google Scholar 

  8. Habib, M.A., Mohktar, M.S., Kamaruzzaman, S.B., Lim, K.S., Pin, T.M., Ibrahim, F.: Smartphone-based solutions for fall detection and prevention: challenges and open issues. Sensors. 14(4), 7181–7208 (2014)

    Article  Google Scholar 

  9. Lee, B.C., Kim, J., Chen, S., Sienko, K.H.: Cell phone based balance trainer. J.Neuroeng. Rehabil. 9(10) (2012)

    Google Scholar 

  10. Algar, L., Valdes, K.: Using smartphone applications as hand therapy interventions. J. Hand. Ther. 27, 254–257 (2014)

    Article  Google Scholar 

  11. Zhu, R., Zhou, Z.: A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Trans. Neural Syst. Rehabil. Eng 12(2), 295–302 (2004)

    Article  Google Scholar 

  12. Timmermans, A., Saini, P., Willmann, R. D., Lanfermann, G., te Vrugt, J., Winter, S.: Home stroke rehabilitation for the upper limbs. In: Engineering in Medicine and Biology Society, EMBS 2007. 29th Annual International Conference of the IEEE, pp. 4015–4018. IEEE Press, Lyon (2007)

    Google Scholar 

  13. Giorgino, T., Tormene, P., Maggioni, G., Pistarini, C., Quaglini, S.: Wireless support to poststroke rehabilitation: myheart’s neurological rehabilitation concept. IEEE. T. Inf. Technol. B. 13(6), 1012–1018 (2009)

    Article  Google Scholar 

  14. Valedo Therapy. (HOCOMA), http://www.valedotherapy.com/

  15. Shin, S.H., du Ro, H., Lee, O.S., Oh, J.H., Kim, S.H.: Within-day reliability of shoulder range of motion measurement with a smartphone. Man. Ther. 17, 298–304 (2012)

    Article  Google Scholar 

  16. Tousignant-Laflamme, Y., Boutin, N., Dion, A.M., Vallée, C.A.: Reliability and criterion validity of two applications of the iPhone to measure cervical range of motion in healthy participants. J Neuroeng Rehabil. 10, 69 (2013)

    Article  Google Scholar 

  17. Jenny, J.Y.: Measurement of the knee flexion angle with a smartphone-application is precise and accurate. J Arthroplasty. 28, 784–787 (2013)

    Article  Google Scholar 

  18. Peters, F.M., Greeff, R., Goldstein, N., Frey, C.T.: Improving acetabular cup orientation in total hip arthroplasty by using smartphone technology. J. Arthroplasty. 27(7), 1324–1330 (2012)

    Article  Google Scholar 

  19. Jones, A., Sealey, R., Crowe, M., Gordon, S.: Concurrent validity and reliability of the Simple Goniometer iPhone app compared with the Universal Goniometer. Physiother. Theory. Pract. 0, 1–5 (2014)

    Google Scholar 

  20. Ockendon, M., Gilbert, R.E.: Validation of a novel smartphone accelerometer-based knee goniometer. J Knee Surg. 25, 341–345 (2012)

    Article  Google Scholar 

  21. Franko, O.I., Bray, C., Newton, P.O.: Validation of a scoliometer smartphone app to assess scoliosis. J Pediatr Orthop. 32, 72–75 (2012)

    Article  Google Scholar 

  22. Ege, T., Kose, O., Koca, K., Demiralp, B., Basbozkurt, M.: Use of the iPhone for radiographic evaluation of hallux valgus. Skeletal Radiol. 42, 269–273 (2013)

    Article  Google Scholar 

  23. Ferriero, G., Sartorio, F., Foti, C., Primavera, D., Brigatti, E., Vercelli, S.: Reliability of a new application for smartphones (DrGoniometer) for elbow angle measurement. PM R. 3, 1153–1154 (2011)

    Article  Google Scholar 

  24. Mitchell, K., Gutierrez, S.B., Sutton, S., Morton, S., Morgenthaler, A.: Reliability and validity of goniometric iPhone applications for the assessment of active shoulder external rotation. Physiother. Theory. Pract. 0, 1–5 (2014)

    Google Scholar 

  25. Milani, P., Coccetta, C.A., Rabini, A., Sciarra, T., Massazza, G., Ferriero, G.: A Review of Mobile Smartphone Applications for Body Position Measurement in Rehabilitation: A Focus on Goniometric Tools. PM&R. 6(11), 1038–1104 (2014)

    Article  Google Scholar 

  26. Vuillerme, M., Fleury, A., Franco, C., Mourcou, Q., Diot, B.: Procédé et système pour la mesure, le suivi, le contrôle et la correction d’un mouvement ou d’une posture d’un utilisateur, Patent FR-1461233, 20/11/2014

    Google Scholar 

  27. Franco, C., Fleury, A., Guméry, P.Y., Diot, B., Demongeot, J., Vuillerme, N.: iBalance-ABF: a smartphone-based audio-biofeedback balance system. IEEE T. Bio-Med. Eng. 60(1), 211–215 (2013)

    Article  Google Scholar 

  28. Mourcou, Q., Fleury, A., Dupuy, P., Diot, B., Franco, C., Vuillerme, N.: Wegoto: A Smartphone-based approach to assess and improve accessibility for wheelchair users. In: Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE, pp. 1194-1197. IEEE Press, Osaka (2013)

    Google Scholar 

  29. Lonn, J., Crenshaw, A.G., Djupsjobacka, M., Johansson, H.: Reliability of position sense testing assessed with a fully automated system. Clin. Physiol. 20, 30–37 (2000)

    Article  Google Scholar 

  30. Bennell, K., Wee, E., Crossley, K., Stillman, B., Hodges, P.: Effects of experimentally-induced anterior knee pain on knee joint position sense in healthy individuals. J. Orthop. Res. 23, 46–53 (2005)

    Article  Google Scholar 

  31. Rialle, V., Vuillerme, N., Franco, A.: Outline of a general framework for assessing e-health and gerontechnology applications: Axiological and diachronic dimensions. Gerontechnology 9(2), 245 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Mourcou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mourcou, Q., Fleury, A., Franco, C., Diot, B., Vuillerme, N. (2015). Smartphone-Based System for Sensorimotor Control Assessment, Monitoring, Improving and Training at Home. In: Geissbühler, A., Demongeot, J., Mokhtari, M., Abdulrazak, B., Aloulou, H. (eds) Inclusive Smart Cities and e-Health. ICOST 2015. Lecture Notes in Computer Science(), vol 9102. Springer, Cham. https://doi.org/10.1007/978-3-319-19312-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19312-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19311-3

  • Online ISBN: 978-3-319-19312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics