Skip to main content

Solving Matching Problems Efficiently in Bipartite Graphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8986))

Included in the following conference series:

  • International Workshop on Combinatorial Algorithms
  • 689 Accesses

Abstract

We investigate the problem maxDMM of computing a largest set of pairwise disjoint maximum matchings in undirected graphs. In this paper, n, m denote, respectively, the number of vertices and the number of edges. We solve maxDMM for bipartite graphs, by providing an \(O(n^{1.5}\sqrt{m/\log n} + mn\log n)\)-time algorithm. We design better algorithms for complete bipartite graphs, and bisplit graphs. (Bisplit graphs are bipartite graphs with the nested neighborhood property.) Specifically, we prove that the problem maxDMM is solvable in complete bipartite graphs in time O(m). A sequence \(S=(s_1,\cdots ,s_t)\) of positive integers is said to be color-feasible for a graph G, if there exists a proper edge-coloring of G with colors \(1,\cdots ,t\), such that precisely \(s_i\) edges have color i, for every \(i=1,\cdots ,t\). Actually, for complete bipartite graphs, we prove that, for any sequence S of integers which is color-feasible for a complete bipartite graph G, an edge-coloring of G corresponding to S can be obtained in time O(m). For bisplit graphs, (1) we solve maxDMM in time \(O(mn\log n)\), and (2) we design an \(O(n^2\log n)\)-time algorithm to count all maximum matchings. This latter time is the same time in which runs the best known algorithm computing the number of maximum matchings in bisplit graphs [17], but our algorithm is much simpler than the one given in [17]. The key idea underlying both results is that bisplit graphs have an O(n)-time enumeration of their minimal vertex covers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a maximum cardinality matching in a bipartite graph in time \({O}(n^{1.5}\sqrt{m/\log n})\). Inf. Process. Lett. 37(4), 237–240 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asratian, A.S.: Some results on an edge-coloring problem of Folkman and Fulkerson. Discret. Math. 223, 13–25 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chartrand, G., Zhang, P.: A First Course in Graph Theory. Dover Publications, New York (2012)

    Google Scholar 

  4. Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in \({O(E \log D)}\) time. Combinatorica 21(1), 5–12 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Couturier, J.F., Golovach, P.A., Kratsch, D., Liedloff, M., Pyatkin, A.: Colorings with few colors: counting, enumeration and combinatorial bounds. Theory Comput. Syst. 52, 645–667 (2013). Springer-Verlag New York. Secaucus, NJ, USA

    Article  MATH  MathSciNet  Google Scholar 

  6. Ding, G.: Covering the edges with consecutive sets. J. Graph Theory 15(5), 559–562 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Even, S., Kariv, O.: An \({O}(n^{2.5})\) algorithm for maximum matching in general graphs. In: IEEE 16th annual Symposium on Foundations of Computer Science (FOCS), pp. 100–112 (1975)

    Google Scholar 

  8. Folkman, J., Fulkerson, D.R.: Edge-colorings in bipartite graphs. In: Bose, R., Dowling, T. (eds.) Combinatorial Mathematics and its Applications, pp. 561–577. University of North Carolina Press, Chapel Hill (1969)

    Google Scholar 

  9. Frost, H., Jacobson, M., Kabell, J., Morris, F.R.: Bipartite analogues of split graphs and related topics. Ars Combinatoria 29, 283–288 (1990)

    MATH  MathSciNet  Google Scholar 

  10. Golumbic, M.R., Goss, C.F.: Perfect elimination and chordal bipartite graphs. J. Graph Theory 2(2), 155–163 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discret. Appl. Math. 28, 35–44 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic J. Comput. 14, 87–108 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Heinrich, K., Hell, P., Kirkpatrick, D.G., Liu, G.: A simple existence criterion for (\(g<f\))-factors. Discrete Mathematics 85, 313–317 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in quadratic time. J. Comb. Theory Ser. B 102, 424–435 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kowalik, L.: Improved edge-coloring with three colors. Theoret. Comput. Sci. 410, 3733–3742 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Okamoto, Y., Uehara, R., Uno, T.: Counting the number of matchings in chordal and chordal bipartite graph classes. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 296–307. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Petersen, J.: Die theorie der regulären graphen. Acta Mathematica 15, 193–220 (1891)

    Article  MATH  MathSciNet  Google Scholar 

  19. Robertson, N., Sanders, D., Seymour, P., Thomas, R.: Efficiently four-coloring planar graphs. In: Proceedings of the 28th annual ACM Symposium on Theory of Computing, (STOC), pp. 571–575 (1996)

    Google Scholar 

  20. Robertson, N., Seymour, P., Thomas, R.: Tutte’s edge-coloring conjecture. J. Comb. Theory Ser. B 70, 166–183 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schrijver, A.: Combinatorial Optimization, vol. 1. Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  22. Slater, P.: A constructive characterization of trees with at least \(k\) disjoint maximum matchings. J. Comb. Theory Ser. B 25, 326–338 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  23. Thomas, R.: Recent excluded minor theorem for graphs. In: Surveys in Combinatorics, vol. 267, pp. 201–222 (1999). The electronic journal of combinatorics 8 (2001)

    Google Scholar 

  24. Yannakakis, M.: Node deletion problems on bipartite graphs. SIAM J. Comput. 10(2), 310–327 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank Odile Favaron for her helpful idea to handle the proof of Theorem 3 by arithmetic. I thank Pierre Fraigniaud for his careful reading and advices to improve the paper writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Djelloul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Djelloul, S. (2015). Solving Matching Problems Efficiently in Bipartite Graphs. In: Jan, K., Miller, M., Froncek, D. (eds) Combinatorial Algorithms. IWOCA 2014. Lecture Notes in Computer Science(), vol 8986. Springer, Cham. https://doi.org/10.1007/978-3-319-19315-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19315-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19314-4

  • Online ISBN: 978-3-319-19315-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics