Skip to main content

Study of \(\kappa (D)\) for \(D = \{2, 3, x, y\}\)

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8986))

Included in the following conference series:

  • International Workshop on Combinatorial Algorithms

Abstract

Let D be a set of positive integers. The kappa value of D, denoted by \(\kappa (D)\), is the parameter involved in the so called “lonely runner conjecture.” Let xy be positive integers, we investigate the kappa values for the family of sets \(D =\{2, 3, x, y\}\). For a fixed positive integer \(x > 3\), the exact values of \(\kappa (D)\) are determined for \(y=x+i\), \(1 \le i \le 6\). These results lead to some asymptotic behavior of \(\kappa (D)\) for \(D=\{2, 3, x, y\}\).

Supported in part by the National Science Foundation under grant DMS-1247679.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barajas, J., Serra, O.: The lonely runner with seven runners. Electron. J. Combin. 15, #R48 (2008)

    MathSciNet  Google Scholar 

  2. Bienia, W., Goddyn, L., Gvozdjak, P., Sebő, A., Tarsi, M.: Flows, view obstructions, and the lonely runner. J. Combin. Theory Ser. B 72, 1–9 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bohman, T., Holzman, R., Kleitman, D.: Six lonely runners. Electron. J. Comb. 8, 49 (2001). Research Paper 3

    MathSciNet  Google Scholar 

  4. Cantor, D., Gordon, B.: Sequences of integers with missing differences. J. Comb. Theory Ser. A 14, 281–287 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, G., Liu, D., Zhu, X.: Distance graphs and \(T\)-coloring. J. Comb. Theory Ser. B 75, 159–169 (1999)

    Article  MathSciNet  Google Scholar 

  6. Cusick, T.: View-obstruction problems in \(n\)-dimensional geometry. J. Comb. Theory Ser. A 16, 1–11 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cusick, T., Pomerance, C.: View-obstruction problems, III. J. Number Theory 19, 131–139 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eggleton, R., Erdős, P., Skilton, D.: Colouring the real line. J. Comb. Theory Ser. A 39, 86–100 (1985)

    Article  MATH  Google Scholar 

  9. Eggleton, R., Erdős, P., Skilton, D.: Research problem 77. Discrete Math. 58, 323 (1986)

    Google Scholar 

  10. Eggleton, R., Erdős, P., Skilton, D.: Colouring prime distance graphs. Graphs Comb. 6, 17–32 (1990)

    Article  MATH  Google Scholar 

  11. Gupta, S.: Sets of integers with missing differences. J. Comb. Theory Ser. A 89, 55–69 (2000)

    Article  MATH  Google Scholar 

  12. Haralambis, N.: Sets of integers with missing differences. J. Comb. Theory Ser. A 23, 22–33 (1997)

    Article  MathSciNet  Google Scholar 

  13. Kemnitz, A., Kolberg, H.: Coloring of integer distance graphs. Discrete Math. 191, 113–123 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, D.: From rainbow to the lonely runner: a survey on coloring parameters of distance graphs. Taiwanese J. Math. 12, 851–871 (2008)

    MATH  MathSciNet  Google Scholar 

  15. Liu, D., Sutedja, A.: Chromatic number of distance graphs generated by the sets \(\{2, 3, x, y\}\). J. Comb. Optim. 25, 680–693 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, D., Zhu, X.: Fractional chromatic number and circular chromatic number for distance graphs with large clique size. J. Graph Theory 47, 129–146 (2004)

    Article  MathSciNet  Google Scholar 

  17. Rabinowitz, J., Proulx, V.: An asymptotic approach to the channel assignment problem. SIAM J. Alg. Discrete Methods 6, 507–518 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Voigt, M., Walther, H.: Chromatic number of prime distance graphs. Discrete Appl. Math. 51, 197–209 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Voigt, M., Walther, H.: On the chromatic number of special distance graphs. Discrete Math. 97, 395–397 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wills, J.: Zwei Sätze über inhomogene diophantische appromixation von irrationlzahlen. Monatsch. Math. 71, 263–269 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhu, X.: Circular chromatic number: a survey. Discrete Math. 229, 371–410 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne Der-Fen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Collister, D., Liu, D.DF. (2015). Study of \(\kappa (D)\) for \(D = \{2, 3, x, y\}\) . In: Jan, K., Miller, M., Froncek, D. (eds) Combinatorial Algorithms. IWOCA 2014. Lecture Notes in Computer Science(), vol 8986. Springer, Cham. https://doi.org/10.1007/978-3-319-19315-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19315-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19314-4

  • Online ISBN: 978-3-319-19315-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics