Skip to main content

Embedding Circulant Networks into Butterfly and Benes Networks

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8986))

Included in the following conference series:

  • International Workshop on Combinatorial Algorithms
  • 657 Accesses

Abstract

The dilation of an embedding is defined as the maximum distance between pairs of vertices of host graph that are images of adjacent vertices of guest graph. An embedding with a long dilation faces many problems, such as long communication delay, coupling problems and the existence of different types of uncontrolled noise. In this paper, we compute the minimum dilation of embedding circulant networks into butterfly and benes networks.

I. Rajasingh—This work is supported by Project No. SR/S4/MS: 846/13, Department of Science and Technology, SERB, Government of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaudhary, V., Aggarwal, J.K.: Generalized mapping of parallel algorithms onto parallel architectures. In: Proceeding of International Conference on Parallel Processing, pp. 137–141 (1990)

    Google Scholar 

  2. Dvor̂ák, T.: Dense sets and embedding binary trees into hypercubes. Discrete Appl. Math. 155(4), 506–514 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.P.: Embedding of hypercubes into grids. In: Mortar Fire Control System, pp.693–701 (1998)

    Google Scholar 

  4. Rajasingh, I., Rajan, B., Rajan, R.S.: Embedding of special classes of circulant networks, hypercubes and generalized Petersen graphs. Int. J. Comput. Math. 89(15), 1970–1978 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gupta, A.K., Nelson, D., Wang, H.: Efficient embeddings of ternary trees into hypercubes. J. Parallel Distrib. Comput. 63(6), 619–629 (2003)

    Article  MATH  Google Scholar 

  6. Bezrukov, S.L.: Embedding complete trees into the hypercube. Discrete Appl. Math. 110(2–3), 101–119 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Manuel, P., Rajasingh, I., Rajan, R.S.: Embedding variants of hypercubes with dilation 2. J. Interconnect. Netw. 13(1–2), 1–16 (2012)

    Google Scholar 

  8. Ramanathan, P., Shin, K.G.: Reliable broadcast in hypercube multicomputers. IEEE Trans. Comput. 37(12), 1654–1657 (1988)

    Article  Google Scholar 

  9. Wong, G.K., Coppersmith, D.A.: A combinatorial problem related to multimodule memory organization. J. Assoc. Comput. Mach. 21(3), 392–401 (1994)

    Article  MathSciNet  Google Scholar 

  10. Boesch, F.T., Wang, J.: Reliable circulant networks with minimum transmission delay. IEEE Trans. Circuit Syst. 32(12), 1286–1291 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bermond, J.C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: a survey. Surv. J. Parallel Distrib. Comput. 24(1), 2–10 (1995)

    Article  Google Scholar 

  12. Beivide, R., Herrada, E., Balcazar, J.L., Arruabarrena, A.: Optimal distance networks of low degree for parallel computers. IEEE Trans. Comput. 40(10), 1109–1124 (1991)

    Article  MathSciNet  Google Scholar 

  13. Wilkov, R.S.: Analysis and design of reliable computer networks. IEEE Trans. Commun. 20(3), 660–678 (1972)

    Article  Google Scholar 

  14. Xu, J.M.: Topological Structure and Analysis of Interconnection Networks. Kluwer Academic Publishers, Dordrecht (2001)

    Book  MATH  Google Scholar 

  15. Manuel, P., Abd-El-Barra, M.I., Rajasingh, I., Rajan, B.: An efficient representation of benes networks and its applications. J. Discrete Algorithms 6(1), 11–19 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  17. Harper, L.H.: Global Methods for Combinatorial Isoperimetric Problems. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  18. Rajan, R.S., Miller, M., Rajasingh, I., Manuel, P.: Embedding circulant networks into certain trees. J. Comb. Optim. (submitted)

    Google Scholar 

  19. Rajan, R.S., Manuel, P., Rajasingh, I., Parthiban, N., Miller, M.: A lower bound for dilation of an embedding. Comput. J. (2015). http://comjnl.oxfordjournals.org/content/early/2015/04/01/comjnl.bxv021

Download references

Acknowledgement

The authors would like to thank the anonymous referees for their comments and suggestions. These comments and suggestions were very helpful for improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sundara Rajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rajan, R.S., Rajasingh, I., Manuel, P., Rajalaxmi, T.M., Parthiban, N. (2015). Embedding Circulant Networks into Butterfly and Benes Networks. In: Jan, K., Miller, M., Froncek, D. (eds) Combinatorial Algorithms. IWOCA 2014. Lecture Notes in Computer Science(), vol 8986. Springer, Cham. https://doi.org/10.1007/978-3-319-19315-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19315-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19314-4

  • Online ISBN: 978-3-319-19315-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics