Skip to main content

Metric Dimension for Amalgamations of Graphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8986))

Included in the following conference series:

  • International Workshop on Combinatorial Algorithms
  • 656 Accesses

Abstract

A set of vertices S resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in S. The metric dimension of G is the minimum cardinality of a resolving set of G.

Let \(\{G_1, G_2, \ldots , G_n\}\) be a finite collection of graphs and each \(G_i\) has a fixed vertex \(v_{0_i}\) or a fixed edge \(e_{0_i}\) called a terminal vertex or edge, respectively. The vertex-amalgamation of \(G_1, G_2, \ldots , G_n\), denoted by \(Vertex-Amal\{G_i;v_{0_i}\}\), is formed by taking all the \(G_i\)’s and identifying their terminal vertices. Similarly, the edge-amalgamation of \(G_1, G_2, \ldots , G_n\), denoted by \(Edge-Amal\{G_i;e_{0_i}\}\), is formed by taking all the \(G_i\)’s and identifying their terminal edges.

Here we study the metric dimensions of vertex-amalgamation and edge-amalgamation for finite collection of arbitrary graphs. We give lower and upper bounds for the dimensions, show that the bounds are tight, and construct infinitely many graphs for each possible value between the bounds.

This research is partially supported by Penelitian Unggulan Perguruan Tinggi (Desentralisasi) 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, R.F., Cameron, P.J.: Base size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc. 43, 209–242 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bollobas, B., Mitsche, D., Pralat, P.: Metric dimension for random graphs. Electron. J. Comb. 20, \(\sharp \)P1 (2013)

    Google Scholar 

  3. Buczkowski, P.S., Chartrand, G., Poisson, C., Zhang, P.: On \(k\)-dimensional graphs and their bases. Period. Math. Hung. 46, 9–15 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of Cartesian products of graphs. SIAM J. Discrete Math. 21, 423–441 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Díaz, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: On the complexity of metric dimension. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 419–430. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tud. Akad. Mat. Kutat Int. Kzl. 8, 229–243 (1963)

    Google Scholar 

  8. Feng, M., Wang, K.: On the metric dimension and fractional metric dimension of the hierarchical product of graphs. Appl. Anal. Discrete Math. 7, 302–313 (2013)

    Article  MathSciNet  Google Scholar 

  9. Feng, M., Xu, M., Wang, K.: On the metric dimension of line graphs. Discrete Appl. Math. 161, 802–805 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractibility: A Guide to the Theory of NP Completeness. W.H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  11. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976)

    MATH  MathSciNet  Google Scholar 

  12. Hernando, C., Mora, M., Pelayo, I.M., Seara, C., Wood, D.R.: Extremal graph theory for metric dimension and diameter. Electron. J. Comb. 17 \(\sharp \)R30 (2010)

    Google Scholar 

  13. Iswadi, H., Baskoro, E.T., Salman, A.N.M., Simanjuntak, R.: The metric dimension of amalgamation of cycles. Far East J. Math. Sci. 41, 19–31 (2010)

    MATH  MathSciNet  Google Scholar 

  14. Iswadi, H., Baskoro, E.T., Simanjuntak, R.: On the metric dimension of corona product of graphs. Far East J. Math. Sci. 52, 155–170 (2011)

    MATH  MathSciNet  Google Scholar 

  15. Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of graphs. Discrete Math. 312, 3349–3356 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jannesari, M., Omoomi, B.: Characterization of \(n\)-vertex graphs with metric dimension \(n-3\). Math. Bohemica 139, 1–23 (2014)

    MATH  MathSciNet  Google Scholar 

  17. Klein, D.J., Yi, E.: A comparison on metric dimension of graphs, line graphs, and line graphs of the subdivision graphs. European J. Pure Appl. Math. 5, 302–316 (2012)

    MathSciNet  Google Scholar 

  18. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70, 217–229 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Manuel, P.D., Abd-El-Barr, M.I., Rajasingh, I., Rajan, B.: An efficient representation of Benes networks and its applications. J. Discrete Algorithms 6, 11–19 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Poisson, C., Zhang, P.: The metric dimension of unicyclic graphs. J. Comb. Math. Comb. Comput. 40, 17–32 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Saputro, S.W., Simanjuntak, R., Uttunggadewa, S., Assiyatun, H., Baskoro, E.T., Salman, A.N.M., Baća, M.: The metric dimension of the lexicographic product of graphs. Discrete Math. 313, 1045–1051 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Simanjuntak, R., Assiyatun, H., Baskoroputro, H., Iswadi, H., Setiawan, Y., Uttunggadewa, S.: Graphs with relatively constant metric dimensions (preprint)

    Google Scholar 

  23. Simanjuntak, R., Murdiansyah, D.: Metric dimension of amalgamation of some regular graphs (preprint)

    Google Scholar 

  24. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  Google Scholar 

  25. Tavakoli, M., Rahbarnia, F., Ashrafi, A.R.: Distribution of some graph invariants over hierarchical product of graphs. App. Math. Comput. 220, 405–413 (2013)

    Article  MathSciNet  Google Scholar 

  26. Yero, I.G., Kuziak, D., Rodriguez-Velázquez, J.A.: On the metric dimension of corona product graphs. Comput. Math. Appl. 61, 2793–2798 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinovia Simanjuntak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Simanjuntak, R., Uttunggadewa, S., Saputro, S.W. (2015). Metric Dimension for Amalgamations of Graphs. In: Jan, K., Miller, M., Froncek, D. (eds) Combinatorial Algorithms. IWOCA 2014. Lecture Notes in Computer Science(), vol 8986. Springer, Cham. https://doi.org/10.1007/978-3-319-19315-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19315-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19314-4

  • Online ISBN: 978-3-319-19315-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics