Abstract
A parallel architecture of the Levenberg-Marquardt algorithm for training a feedforward neural network is presented. The proposed solution is based on completely new parallel structures to effectively reduce high computational load of this algorithm. Detailed parallel neural network structures are explicitely discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bilski, J.: The UD RLS algorithm for training the feedforward neural networks. International Journal of Applied Mathematics and Computer Science 15(1), 101–109 (2005)
Bilski, J., Litwiński, S., Smoląg, J.: Parallel realisation of QR algorithm for neural networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidelberg (2004)
Bilski, J., Smoląg, J.: Parallel realisation of the recurrent RTRN neural network learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)
Bilski, J., Smoląg, J.: Parallel realisation of the recurrent Elman neural network learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 19–25. Springer, Heidelberg (2010)
Bilski, J., Smoląg, J.: Parallel realisation of the recurrent multi layer perceptron learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 12–20. Springer, Heidelberg (2012)
Bilski, J., Smoląg, J.: Parallel approach to learning of the recurrent Jordan neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 32–40. Springer, Heidelberg (2013)
Bilski, J.: Parallel Structures for Feedforward and Dynamical Neural Networks (in Polish). AOW EXIT (2013)
Bilski, J., Smoląg, J., Galushkin, A.I.: The parallel approach to the conjugate gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 12–21. Springer, Heidelberg (2014)
Bilski, J., Smoląg, J.: Parallel Architectures for Learning the RTRN and Elman Dynamic Neural Networks. IEEE Transactions on Parallel and Distributed Systems PP(99) (2014), doi:10.1109/TPDS.2014.2357019
Chu, J.L., Krzyźak, A.: The recognition of partially occluded objects with support vector machines, convolutional neural networks and deep belief networks. Journal of Artificial Intelligence and Soft Computing Research 4(1), 5–19 (2014)
Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno Fuzzy Systems. In: Proceedings of the Int. Joint Conference on Neural Networks, Montreal, pp. 1764–1769 (2005)
Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)
Cpalka, K., Rebrova, O., Nowicki, R., et al.: On design of flexible neuro-fuzzy systems for nonlinear modelling. International Journal of General Systems 42(6), Special Issue: SI, 706–720 (2013)
Fahlman, S.: Faster learning variations on backpropagation: An empirical study. In: Proceedings of Connectionist Models Summer School, Los Atos (1988)
Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994)
Korytkowski, M., Nowicki, R., Rutkowski, L., Scherer, R.: AdaBoost Ensemble of DCOG Rough–Neuro–Fuzzy Systems. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 62–71. Springer, Heidelberg (2011)
Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)
Korytkowski, M., Scherer, R.: Negative Correlation Learning of Neuro-fuzzy System Ensembles. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 114–119. Springer, Heidelberg (2010)
Laskowski, L., Jelonkiewicz, J.: Self-Correcting Neural Network for stereo-matching problem solving. Fundamenta Informaticae 138, 1–26 (2015)
Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 523–534. Springer, Heidelberg (2013)
Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 329–344. Springer, Heidelberg (2013)
Marqardt, D.: An algorithm for last-sqares estimation of nonlinear paeameters. J. Soc. Ind. Appl. Math., 431–441 (1963)
Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural networks. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114 (2011)
Riedmiller, M., Braun, H.: A direct method for faster backpropagation learning: The RPROP Algorithm. In: IEEE International Conference on Neural Networks, San Francisco (1993)
Romaszewski, M., Gawron, P., Opozda, S.: Dimensionality reduction of dynamic msh animations using HO-SVD. Journal of Artificial Intelligence and Soft Computing Research 3(3), 277–289 (2013)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McCelland, J. (red.) Parallel Distributed Processing, ch. 8, vol. 1. The MIT Press, Cambridge (1986)
Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065 (1993)
Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of a wide class of disturbances. IEEE Transactions on Information Theory 37(1), 214–216 (1991)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the gaussian approximation. IEEE Transactions on Knowledge and Data Engineering 26(1), 108–119 (2014)
Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)
Rutkowski, L., Rafajlowicz, E.: On optimal global rate of convergence of some nonparametric identification procedures. IEEE Transactions on Automatic Control 34(10), 1089–1091 (1989)
Smoląg, J., Bilski, J.: A systolic array for fast learning of neural networks. In: Proc. of V Conf. Neural Networks and Soft Computing, Zakopane, pp. 754–758 (2000)
Smoląg, J., Rutkowski, L., Bilski, J.: Systolic array for neural networks. In: Proc. of IV Conf. Neural Networks and Their Applications, Zakopane, pp. 487–497 (1999)
Starczewski, A.: A clustering method based on the modified RS validity index. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 242–250. Springer, Heidelberg (2013)
Starczewski, J., Rutkowski, L.: Connectionist structures of type 2 Fuzzy Inference Systems. In: 4th International Conference on Parallel Processing and Applied Mathematics, Nalenczow, Poland (2001)
Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval consequents. In: Neural Networks and Soft Computing. Advances In Soft Computing, pp. 570–577 (2003)
Tadeusiewicz, R.: Neural Networks (in Polish). AOW RM (1993)
Werbos, J.: Backpropagation through time: What it does and how to do it. Proceedings of the IEEE 78(10) (1990)
Wilamowski, B.M., Yo, H.: Neural network learning without backpropagation. IEEE Transactions on Neural Networks 21(11), 1793–1803 (2010)
Zalasiński, M., Cpałka, K.: New approach for the on-line signature verification based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 342–350. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bilski, J., Smoląg, J., Żurada, J.M. (2015). Parallel Approach to the Levenberg-Marquardt Learning Algorithm for Feedforward Neural Networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-19324-3_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19323-6
Online ISBN: 978-3-319-19324-3
eBook Packages: Computer ScienceComputer Science (R0)