Abstract
In this paper, we describe fuzzy agglomerative clustering, a brand new fuzzy clustering algorithm. The basic idea of the proposed algorithm is based on the well-known hierarchical clustering methods. To achieve the soft or fuzzy output of the hierarchical clustering, we combine the single-linkage and complete-linkage strategy together with a fuzzy distance. As the algorithm was created recently, we cover only some basic experiments on synthetic data to show some properties of the algorithm. The reference implementation is freely available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Legendre, P., Legendre, L.: Numerical ecology. Developments in Environmental Modelling, vol. 24. Elsevier B.V., Amsterdam (2012)
Russell, S., Lodwick, W.: Fuzzy clustering in data mining for telco database marketing campaigns. In: 18th International Conference of the North American Fuzzy Information Processing Society, NAFIPS 1999, pp. 720–726 (July 1999)
BrychcÃn, T., KonopÃk, M.: Semantic spaces for improving language modeling. Computer Speech & Language 28(1), 192–209 (2014)
Lin, D., Wu, X.: Phrase clustering for discriminative learning. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, ACL 2009, vol. 2, pp. 1030–1038. Association for Computational Linguistics, Stroudsburg (2009)
Artiles, J., Gonzalo, J., Sekine, S.: The semeval-2007 weps evaluation: Establishing a benchmark for the web people search task. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval 2007), pp. 64–69. Association for Computational Linguistics, Prague (2007)
Artiles, J., Gonzalo, J., Sekine, S.: Weps 2 evaluation campaign: overview of the web people search clustering task. In: 18th WWW Conference on 2nd Web People Search Evaluation Workshop, WePS 2009 (2009)
Artiles, J., Borthwick, A., Gonzalo, J., Sekine, S., Amigó, E.: Weps-3 evaluation campaign: Overview of the web people search clustering and attribute extraction tasks. In: CLEF 2010 LABs and Workshops, Notebook Papers, September 22-23, Padua, Italy (2010)
Delgado, A.D., MartÃnez, R., Fresno, V., Montalvo, S.: A data driven approach for person name disambiguation in web search results. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 301–310. Dublin City University and Association for Computational Linguistics, Dublin (2014)
GhasemiGol, M., Sadoghi Yazdi, H., Monsefi, R.: A new hierarchical clustering algorithm on fuzzy data (fhca). International Journal of Computer and Electrical Engineering IJCEE 2(1), 134–140 (2010)
Rodrigues, M.E.S.M., Sacks, L.: A scalable hierarchical fuzzy clustering algorithm for text mining. In: Proceedings of the 5th International Conference on Recent Advances in Soft Computing (2004)
Treerattanapitak, K., Jaruskulchai, C.: Generalized agglomerative fuzzy clustering. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part III. LNCS, vol. 7665, pp. 34–41. Springer, Heidelberg (2012)
Frigui, H., Krishnapuram, R.: Clustering by competitive agglomeration. Pattern Recogn. 30(7), 1109–1119 (1997)
Bank, M., Schwenker, F.: Fuzzification of agglomerative hierarchical crisp clustering algorithms. In: Gaul, W.A., Geyer-Schulz, A., Schmidt-Thieme, L., Kunze, J. (eds.) Challenges at the Interface of Data Analysis, Computer Science, and Optimization. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 3–11. Springer, Heidelberg (2012)
Konkol, M.: Brainy: A machine learning library. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS(LNAI), vol. 8468, pp. 490–499. Springer, Heidelberg (2014)
McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional data sets with application to reference matching. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 169–178. ACM, New York (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Konkol, M. (2015). Fuzzy Agglomerative Clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-19324-3_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19323-6
Online ISBN: 978-3-319-19324-3
eBook Packages: Computer ScienceComputer Science (R0)